城市轨道交通智能监测技术应用研究

张 鑫 杨洪飞

中国电建集团西北勘测设计研究院有限公司工程实验监测院 陕西西安 710000

摘 要:城市轨道交通是现代城市公共交通系统的重要组成部分,以其高效率和环境友好的特性,成为缓解城市交通拥堵和减少碳排放的有效手段。然而,随着城市轨道交通网络规模的不断扩大、客流规模的持续增加,传统运营管理模式已难以满足当前需求,尤其是在保障运营安全和提高服务质量上显得力不从心。将智能监测技术引入城市轨道交通管理系统中,为城市轨道交通管理和优化提供了一种新的途径。在此背景下,本文概述了城市轨道交通智能检测技术,分析了智能监测技术在城市轨道交通中的具体应用,探究了技术进展与挑战,结合具体案例总结经验,并展望了未来的发展趋势,旨在为相关从业人员提供书面参考。

关键词:城市轨道交通;智能监测技术;物联网;运营安全

城市轨道交通作为现代城市公共交通的一种重要形式,在世界各国都得到了迅速的发展。但是,随着线路的延伸和客流的不断增长,其运营也面临着设备老化、系统复杂性和运营成本增加等问题。智能监测技术在这一背景下发挥着重要作用,该技术可以通过大数据分析,对客流趋势进行预测,从而实现运力资源的精确分配,同时还可以在安全上起到很大的作用,能够实时监测线路的状态,对潜在的故障进行预警,有效地防止事故的发生。另外,智能监测技术还可以帮助管理优化,通过建立智能维护系统,实现远程诊断和预测维修,减少维护费用。随着物联网和人工智能等技术的融合与应用,城市轨道交通将向智能化和高效率方向迈进,为乘客提供更便捷、更安全的出行体验,推动城市交通的可持续发展。

一、城市轨道交通智能检测技术概述

智能监测技术是指运用现代信息技术,实时监测、分析、预警及辅助决策的一种技术。根据监测对象的不同,可以分为车辆状态监测、轨道监测和信号系统监测等;从技术方法上看,可以将其划分为基于传感器技术的实时监测、基于大数据分析的故障诊断及基于人工智能的预测预警三大类。实现智能监测技术,离不开大数据分析、物联网、人工智能及云计算等技术。大数据分析可从海量数据中提取有用信息,支持故障预测与决策支持;物联网技术可以实现设备之间的互联和实时监测;人工智能技术可以模拟人的思维方式,对复杂的问题做出决策;云计算为海量数据的分析与处理提供了强大的

计算与存储资源。智能监测系统一般由数据获取、数据传输、数据处理、数据分析、预警及决策支持等几个部分组成。其中,数据获取部分负责采集原始数据;数据传输部分向处理中心传送数据;数据处理部分负责数据的净化、转化与存储;数据分析部分采用算法挖掘、分析数据;预警及决策支持环节则是根据分析结果进行故障预警和决策支持^[1]。

二、智能监测技术在城市轨道交通中的具体应用

(一) 车辆运行监测

城市轨道交通智能化监测技术的应用,极大地提高 了城市轨道交通的运行效率与安全水平。首先,针对车 辆行驶状态的监测,通过安装各种传感器以及高清摄像 机,实现对车辆行驶速度、位置、加速度等关键参数的 实时监测。比如, 当车速超过一定的阈值, 系统就会自 动报警, 防止发生安全事故。同时, 该系统还可以对车 辆的轮对磨损、轴承故障等情况进行实时监测与预警, 避免因机械故障而导致的列车停运或事故发生。据统计, 某城市轨道交通系统采用智能监测技术后,故障发生率 下降30%,运行效率提高20%。以2022年为例,利用智 能监测技术,已成功预防50起因车辆故障导致的运营中 断事件,提升乘客出行体验与安全水平。另外,智能监 测技术在供电监测领域也有着广泛的应用前景, 该系统 可以实时监测用电设备的运行状态、用能状态, 从而达 到优化用能效率的目的。将智能监测技术应用于城市轨 道交通,不仅可以提高运行效率,而且可以极大地提高 安全水平。随着技术水平的不断提高与应用范围的不断

扩大,城市轨道交通将向智能化和高效率方向发展[2]。

(二)轨道与基础设施监测

城市轨道交通智能化监测技术得到了越来越多的应 用,而轨道交通监测系统又是其中的一个重要环节。通 过采用高精度传感技术与数据分析技术,实时监测高、 低、水平、轨距等几何状态,以保证列车平稳、安全运 行。该系统能实时监测列车运行状态,及时发现列车运 行过程中出现的细微变化,从而预防列车因运行故障而 发生事故。另外, 在智能监测技术中, 结构健康监测也 是一个重要的应用领域。在桥梁、隧道等基础设施中安 装传感器,实时监测其运行状态,及时发现安全隐患。 例如,通过对桥梁的受力、变形、振动等状态进行监测, 可以评估桥梁的承载力与安全性,从而有效地防止因结 构故障而造成的交通事故与人员伤亡。采用智能监测技 术,可以有效地提高城市轨道交通运行的安全可靠性, 降低维护费用,降低人力投入,通过自动监测与数据分 析,能够及时发现并消除隐患,避免对整个系统进行全 面检修。同时,智能监测技术可为城市轨道交通系统的 优化与优化提供可靠的数据支撑。因此,将智能监测技 术应用于轨道交通领域中的轨道与基础设施监测,对于 提高城市轨道交通系统的安全性具有重要意义。

(三)环境与设备监测

智能监测技术为城市轨道交通提供了强有力的环境 监测与设备监测手段。从环境角度看,智能监测技术能 够实时监测空气质量,利用高精度的传感器,可以准确 地测量PM2.5、PM10、SO₂、NO₂等污染物的浓度,保 证空气质量达到国家规定的标准。例如,某城市地铁采 用智能监测技术,可实现PM2.5浓度小于35微克/立方 米,有效改善了城市公共交通环境。同时,智能监测技 术也在噪声监测领域得到了广泛的应用。通过对地铁运 行过程中产生的噪声进行实时监测,保证噪声在85分贝 以内。在设备监测方面,采用智能监测技术,实现了对 电力系统及信号系统的实时监测,如电网中的电压、电 流和功率等参数,及时发现电网中出现的异常状况,避 免因设备故障而造成的运行中断。如某地铁线路采用智 能监测技术,成功地对多种原因引起的故障进行了预测 和处理,确保了线路的安全运行。另外,智能监测技术 还能全面监测信号系统,包括信号传输质量和设备状态, 保证信号系统的稳定运行,乘客的乘坐体验[3]。

(四)乘客服务优化

将智能监测技术应用于城市轨道交通, 在乘客服务

优化方面显示出巨大的潜力与价值,利用智能化技术, 可以更准确地把握客流状态,提高服务水平。智能监测 技术通过对客流数据的实时采集与分析, 可以对高峰期 及拥堵区域进行准确的预测与识别,这种基于数据驱动 的调度决策支持,可以帮助运营方提前调整运力,优化 列车运行图,有效缓解客流压力。深入分析乘客的行为 规律, 为乘客提供更加个性化的服务方案, 如根据乘客 出行习惯进行站点布局调整、增设服务设施等,以提高 乘客的出行体验。在突发事件中,智能监测技术同样具 有重要意义。该系统可以快速采集和分析现场信息,对 人员疏散路径进行模拟和优化,确保突发事件中人员的 快速有序疏散。同时,结合视频监测、人脸识别等技术, 实现对特殊群体(如老人、儿童、残疾人等)的实时跟 踪,实现应急救援与引导。将智能监测技术应用于乘客 服务优化中,不仅能提升服务效率和个性化体验,还能 建立起一套全方位、多层次的安全保障体系,确保每一 位乘客的出行既便捷又安心, 促使城市轨道交通向着智 能化和人性化的方向发展。

三、技术进展与挑战

近几年来,智能监测技术在城市轨道交通中的应用 有了长足的发展。在传感技术上,光纤、压电陶瓷等新 型传感技术已被广泛应用于轨道检测领域,可实现轨道 变形与应力状态的准确测量。同时,利用深度学习等机 器学习算法对海量监测数据进行处理与分析,实现对轨 道状态的有效预测与诊断。另外,利用云计算技术,可 以更有效地分析、存储数据,实现实时监测与远程管理。 这些创新提升了城市轨道交通监测的精度与效率,并为 其安全运行提供了强有力的保障。

城市轨道交通智能监测技术虽然取得了长足的进步,但仍然面临着许多挑战。首先,监测数据中蕴含着海量的 敏感信息,一旦被泄露,将给乘客及运营企业带来严重的 危害。此外,系统的稳定性也是一个很大的挑战,任何系 统的失效都会造成列车的延误和安全事故的发生。此外, 较高的初始投资费用也是一个重要考虑因素。因此,如何 在保证数据安全性和稳定性的同时,又能有效地降低设备 的投资成本,是智能监测技术亟待解决的重要问题。

针对上述挑战,应采取一系列行之有效的解决策略。 第一,通过加密技术、访问控制等手段,提高监测数据 的安全性与隐私性,增强数据的安全性。第二,为了提 高系统的稳定性,利用冗余设计与故障预测算法,对潜 在的故障进行及时的检测与处理,缩短系统的停工期。 第三,在前期投入成本较高的情况下,可采取政府补贴、企业合作、长期经营收入分担等措施来缓解投资压力。 第四,鼓励技术创新与产业升级,促进智能监测技术的 推广与应用。通过上述策略,以期克服目前存在的问题, 促进城市轨道交通智能监测技术的不断发展^[4]。

四、案例分析与经验总结

北京地铁将基于通信的列车控制系统(CBTC)应用 于多条线路,可实现高精度列车定位、实时数据传输与 分析,极大地提高了运营效率与安全水平。该系统可以 对列车运行状态、线路占用和客流进行实时监测, 有效 地减少列车间隔, 提高列车准点率。在实施过程中, 北 京地铁注重与供应商建立长期合作关系, 保证技术不断 更新,并通过大规模培训确保运营人员对新技术的掌握。 此外,智能监测系统在新加坡"未来地铁网络"计划中 也起着重要作用,通过利用物联网传感器和大数据分析 平台,全面监测基础设施运行状态,对潜在故障进行预 警。例如,使用振动传感器对钢轨磨损状况进行预测, 可以大大减少维修费用, 延长设备使用寿命。同时, 该 计划也注重资料分享和跨部门合作, 以提高紧急事件的 反应速度。上述实例说明智能监测技术是提高城市轨道 交通安全、高效和可持续发展的重要手段。在推广该技 术时,需注意以下几点:一是加强前期的规划和需求分 析,保证技术方案符合实际运行需要;二是要加强跨部 门合作,建立有效的信息共享机制;三是注重人才培养, 提高运维队伍的业务素质;四是鼓励技术革新和国产化, 以降低长期运行费用; 五是建立持续的评价和反馈机制, 根据运行数据持续优化系统, 使其能够更好的服务于未 来城市轨道交通的发展[5]。

五、未来发展趋势与展望

随着科学技术的飞速发展,城市轨道交通智能监测技术正在逐渐融入5G通信技术和区块链等前沿领域。5G网络具有超高带宽、低时延等特点,可为实时监测和数据分析提供强有力的支持,实现更加精确的状态预测和故障预警。同时,区块链的去中心化和透明性,可以保证数据的安全和完整,为城市轨道交通建设提供信任的基础。这一技术融合,不仅可以提高运营效率,而且可以促进个性化服务,给乘客提供更加方便和舒适的旅行体验。智能监测技术是实现可持续发展的关键,能够为

城市轨道交通的绿色低碳发展提供新的思路和方法,通过结合人工智能算法,使智能系统能够主动学习和适应环境的变化,达到智能和精细化的运营管理,提高运行效率和服务品质。在政策制定方面,应该加强对智能监测技术的研究和开发,制定相应的标准和规范,以保证技术的标准化和安全。产业从业者要不断地探索技术创新,加强跨学科的合作,促进科技成果的转化,并将重点放在核心算法优化和数据模型构建等方面,推动智能监测技术的发展^[6]。

结语

综上所述,随着科学技术的进步与智慧城市建设的不断深入,智能监测技术也必将得到不断的创新与完善,为城市轨道交通的可持续发展提供强有力的保证。在未来,智能监测技术将深入到轨道交通系统的各个环节,实现全流程、全过程的智能化管理,进一步提升运营效率与服务品质,为城市轨道交通的发展注入新的活力,引领城市轨道交通行业迈向更加智慧、高效的未来。

参考文献

[1]常二歌, 樊一.智能虚拟客服技术在城市轨道交通运营管理中的应用[J]. 网络安全和信息化, 2024, (08): 56-58.

[2] 窓元召.接触网智能监测系统在城市轨道交通供电系统运维中的应用研究[J].工程建设与设计,2024,(14):86-88.

[3] 陈星, 范礼乾, 阴佳腾, 赵飞.城市轨道交通智能调度技术及应用研究[J].智慧轨道交通, 2024, 61 (04): 48-51+57.

[4]马卫东,梁孟昌,崔博.城市轨道交通AI技术在安全监测中的应用研究[J].现代城市轨道交通,2023,(11):114-119.

[5] 王向阳, 朵建华, 刘懂懂, 金雪军.MSS维护监测系统在城市轨道交通中的智能应用[J].铁道通信信号, 2023, 59 (12): 17-23.

[6]李毅,邓懿,万擎,胡文宇.城市轨道交通智能环境监测预警技术开发及应用实践[J].城市轨道交通,2023,(06):35-37.