新能源发电技术在电力系统中的应用

银仁邦 王文静 张 涛 三峡新能源五家渠发电有限公司 新疆乌鲁木齐 831100

摘 要:近年来,随着社会经济发展速度的日益加快,社会对于电力能源的需求量也在持续提高。而传统发电方式主要是依靠消耗不可再生能源的火力发电,具有诸多弊端,如资源浪费和环境污染等。与之相比,新能源发电技术具有良好的可再生性和清洁性,在电力系统中具有较高的应用价值。目前,可将风能发电、太阳能发电、地热能发电、海洋能发电、生物质能发电等技术应用于电力系统中,并提供相应的保障措施,使其功能与价值得到最大发挥。 关键词:新能源;发电技术;电力系统

引言

当今社会的一个重要的发展主题就是绿色可持续发展,其在诸多行业中已经带来了深远的影响。电力能源是人们日常生活和工作的主要能源,因此电力行业的良好持续发展也非常重要。对此,新能源发电技术以其清洁性与可再生性的优势,能够很好地满足绿色可持续发展的要求,使电力行业在新时期的发展要求得到满足。随着我国科技手段的不断发展,各类新能源发电技术逐渐成熟,其在电力系统中所占据的位置也越来越重要。

一、新能源发电技术的概述

新能源发电是与传统能源发电相对应的概念, 指的 是对自然界中可以循环再生的能量资源加以利用,借助 相应的技术和装置使其变为电能。新能源发电普遍具有 低排放、可再生、清洁等特点,在能源、环境等领域都 十分友好。目前常见的新能源发电技术主要包括风能、 太阳能、地热能、海洋能、生物质能等类型。其中,风 能发电是使用风力发电机在风力带动下转动生成电能, 该技术的优势在于无污染、资源多、分布广, 但由于风 速并不稳定, 所以发电效率不高。太阳能发电是使用光 伏电池使太阳能变为电能,该技术无污染、资源多,无 需耗费较高的维护成本,但容易受到气候环境的影响, 因而发电效率有限回。地热能是使用地下热能制造蒸汽 带动发电机发电,该技术污染较少、稳定性好,但也面 临着资源分布不均、地埋深度大等问题。海洋能发电是 利用海洋温差、波浪、潮汐等带来的能量进行发电,其 资源优势非常丰富,还具有较强的可预测性,不过这种 技术设备成本比较高, 且技术尚未完全成熟。生物质能 发电是借助生物资源发电,资源非常广泛,也具有较强的可再生性,不过在发电过程中能源密度比较低,且会出现一定的碳排放。各种新能源发电技术都具有不同的优缺点,在电力系统应用中应合理选择。

二、新能源发电技术在电力系统中的应用价值

目前,由于社会中能源紧缺的问题日益严峻,因而 人们对于新能源的开发利用也更为重视。新能源发电技 术经过研发之后,通过示范效应展示出了较强的优势, 因而逐渐得到了推广和生产。当前核电能源、风力发电、 水力发电、沼气发电、太阳能热水器等应用已经在人们 的生活中逐渐普及。而太阳能光伏发电、地热发电、海 洋能发电、生物质能发电也在快速发展和完善。这些技 术在电力系统中的应用,使我国能源短缺、生态破坏等 问题都得到了较大地缓解, 因而具有重要的应用价值。 在电力系统中,通过应用新能源发电技术,能提高电网 运行的稳定水平,削减电力企业运行成本。在保证新能 源发电稳定运行的前提下, 能够显著提升电力企业效益 水平。在电力市场中, 电力需求和电力峰谷价格有着直 接的联系,通过新能源发电加以协调,二者的矛盾能够 有效化解。新能源发电技术能够发挥出辅助电网调峰调 频的功能,在电网容量固定的前提下,能使新能源消纳 能力提升[2]。再通过补贴的策略,对电力资源应用成本 做出调节, 进而在市场交易中体现出更明显的外部性, 带动新能源产业发展进步,实现资源节约及可持续发展。

三、新能源发电技术在电力系统中的应用措施

(一)风能发电技术

风能是自然界当中很常见的清洁能源,具有较大的储量。因此风能发电技术在新能源发电当中占据了重要

的位置。该技术主要是使用风能发电装置收集风能,并 将其转化为机械势能,然后通过机械装置的运动发电。 风力发电设备包括风力发电机、塔架、风轮等组成部分。 其中风轮叶片是使用轻质高强合成材料制成,一般选择S 型叶片或双流线型推进叶片,可以高效采集风能。不过, 由于风轮叶片运行在室外环境, 受环境因素影响较大, 可能发生开裂或腐蚀现象,因而对于维护保养要求较高。 塔架用于支撑风轮及发电装置, 塔架的具体高度一般按 照风轮直径设置,大多在40米到120米左右。风能发电 机是实现机械能向电能转化的重要部件, 其装机容量和 风轮叶片一般成正比关系。目前使用的风能发电机按照 转速分类可分成多状态、变速、恒速等类型,按照功率 调节模式可分为独立变桨距型、主动失速型、变桨距型、 定桨距调速型等类型。在电力系统中,运用风能控制技 术,通过并网发电机控制转换风能。对于并联风机的速 度,可借助模糊控制算法予以提升,使其出力效率提高。 或是借助神经网络技术,通过对叶片间距的调整,让控 制系统速率提升,减少不良因素的影响[3]。此外,可运 用无功补偿设备实现无功电压控制技术, 使风电机组以 更高效率运转。通过实时动态补偿电力系统,避免由于 功率不稳造成系统振荡的可能。风能在我国有着广泛分 布,并且高效无污染。经过勘测选择合适位置安装风力 发电系统,做好日常维护保养,可以保证长期运行,在 电力系统中具有重要位置。

(二)太阳能发电技术

太阳能发电技术中应用的太阳能电池板, 可在光照 下激发电子产生电流,通过光电效应实现光能到电能的 转化。在太阳能发电设备中,太阳能电池板至关重要, 直接影响发电效率。目前,太阳能电池板主要有聚光电 池板、复合薄膜光伏电池板、硅基薄膜光伏电池板、晶 硅光伏电池板等类型。其中, 比较常用的是晶硅光伏电 池板,如多晶硅、单晶硅等,可以达到比较高的光电转 换效率。如果光照条件比较有限,可以硅基薄膜电池, 不过其光电转换效率比较有限,同时在使用时间延长的 情况下,转换效率还会有所下降。复合薄膜电池使用 时会产生污染,所以应用并不广泛,聚光电池板的光电 转换效率比较高,不过需要配合集光系统、散热器共同 使用,会增加应用成本,所以应用也会受限。在电力系 统中,应用光伏发电系统必须考虑电压波动的情况,一 般使用无功发电机调压技术来稳定电网电压, 如恒定功 率因数、恒定电压等模式。在实际应用当中, 根据电压 变化,对功率系数动态调整,如果电力系统稳定电压超出了额定电压的10%,应选择恒压调节的策略。该项发电技术清洁无污染,可应用范围比较广,不需要消耗燃料,仅需短期施工便可建成。太阳能源是当今世界上最为主要的新型能源之一,太阳能电池能够应用在任何存在光源的地方。利用太阳能发电技术,可以实现太阳能到电能的直接转换,省去了二次转换的环节,因而在转换效率上可以达到相对较高的水平。在实际应用中,可以选择建筑物的屋顶、墙面等光照充足的位置安装太阳能电池板,很少需要额外选择建设区域。并且整套设施也没有机械传动部分,因而维护简单方便,不容易出现故障。

(三)地热能发电技术

地热能发电是利用各种渠道将地热能转化为电能的 过程,具体包含了闪蒸发电、凝气发电、反压发电等不 同形式。其中, 闪蒸发电技术是向闪蒸器当中导入地热 水,通过降压闪蒸处理产生水蒸汽,然后输送进入蒸汽 机发电。应用该项技术时,需要保证动力装置性能充足, 保障发电正常进行。反压发电技术一般在干蒸汽田中比 较常用,其压力、温度都处于较高程度。运用这项技术 引入干蒸汽,去除杂质之后,再使用汽轮发电机发电。 蒸汽发电的基本原理和反压发电相类似, 但是该技术是 利用了凝汽器来提纯处理地热蒸汽,将杂质去除之后, 通过汽轮机发电。冷凝装置用于聚集未冷凝地热蒸汽, 排净冷凝装置空气后处于真空状态, 使机组能够保持较 高的效率运行[4]。我国目前已有较为丰富的地热能资源, 尤其在西藏地区和四川地区比较明显。不过当前地热能 的利用主要局限在浅表地层,难以进行深入开发,并且 在该项技术发展方面进度较慢。我国近年来对地热资源 开发利用越来越关注,在政策和经济方面提供了一定的 支持, 使得地热能发电取得了较好的进展。

(四)海洋能发电技术

海洋能发电技术是近年来一种新型的新能源发电技术,通过高效利用海洋能源,缓解海洋能源紧缺的情况。在实际应用中,通过设计制造高质量可靠的转换设备,将波浪发电技术予以完善,使之转变为液压气能源、机械能源,为生产规划的落实提供保障。通过这种方式,可以使海洋能在电力系统中发挥出更高的价值。在潮汐势能发电技术的研究方面,首先明确了潮汐这种自然现象的发生,主要是由于太阳、月亮等天体的重力和引力作用,造成地球上海水涨落的影响。借助这一原理,利

用水位差进行潮汐发电,实现海洋能向电能的转变。该项发电技术的优势和特点在于成本较低、储量巨大,在电力系统中可以达到较好的应用效果。未来要进一步大力开发这一领域,尤其是对于潮汐能的高效利用。同时在储能技术方面予以提升,使海洋能发电在电力系统中占据更大的比重。

(五) 生物质能发电技术

生物质能发电技术应用了生物质燃料,经过有机物 转化产生可燃性气体,进而发电。目前该项发电技术主 要有沼气发电、气化发电、燃烧发电等类型。其中, 沼 气发电是选用生物废渣加入反应装置,使用厌氧菌对其 发酵处理。生成沼气之后采取分离过滤和压缩冷却,最 终向发电机组输送发电。气化发电中可燃气体的来源是 生物质转化,通过气体燃烧发电。先处理生物质原料, 向汽化炉中输送原料进行汽化处理, 再利用净化装置净 化得到的可燃气体,最后向汽轮机系统输送发电。燃烧 发电是在特制锅炉中直接加入生物质原料,燃烧产生水 蒸汽,输送到蒸汽轮机或发电机发电。我国的生物质能 资源非常丰富,包括城市生活垃圾、农村作物秸秆、林 草等, 这些资源都可为生物质能发电提供充足的原料支 持。我国当前对于该项发电技术给予了更大的支持,在 政策方面予以一定的倾斜,并且制定了相关的指南及规 划,为其在电力系统中的应用提供了充分的可能。

四、新能源发电技术在电力系统中的应用保障

为保证新能源发电技术能够在电力系统中得到良好 地应用,需要采取一系列措施为其提供保障。要坚持做 好技术创新研发工作,提供充足的政策支持和法规保障, 加强国际合作交流,重视人才培养教育,优化经济和市 场机制,使新能源发电技术的优势得到充分发挥。新能 源发电技术目前仍存在很多技术难点,需要不断进行技 术创新研发。有关部门要加大投入力度,保证扎实基础, 为技术发展提供支持。例如,可在废气处理技术、资源 评估技术、高效材料技术、智能控制技术等方面加大研 究力度,使新能源发电技术得到补足。国家和政府需要 对新能源发电的相关政策法规予以完善,并且在政策方 面提供足够的支持和引导,完善相应的标准体系、管理 体系等。在新能源发电技术监管审核中,需要侧重资源 利用、环境保护、技术安全,使技术应用能够取得更好 的效益。

在新能源发电技术应用过程中,可以积极与国外先 进单位合作,引进新的工艺、技术、装备、材料。积极 参与国际标准规范的制定完善,加强全球范围内的技术 互认[5]。新能源技术的发展需要充足的人才储备,因此 各高校应设置相关专业,结合行业需求设置课程与制定 计划,培养新能源领域的专业人才。此外,在职业技术 培训交流方面也要予以关注,不断强化从业人员的能力 素质,为新能源发电提供足够的人才供应。若要实现新 能源发电与现有电力系统的真正融合,就要大力推进其 经济和市场机制的优化。例如,政府部门可以实施购电 价格及补贴政策,对投资应用新能源发电技术的企业提 供相应的支持和鼓励。可以建立相应的绿色金融和信贷 产品,为新能源发电项目建设提供资金保障。在新能源 电力市场发展中,大力推行电力交易的市场化,引导新 能源发电技术实现合理的市场化运营与良性竞争,从而 促进技术进步和成本下降,进一步降低新能源发电技术 的应用门槛。

总结

新能源发电技术是当今社会正在大力发展的一项新技术,该项技术主要是为了解决能源资源紧缺的问题。 利用可再生的清洁能源代替传统的化石能源发电,可以 有效地减少对环境的污染,同时可以提供大量的电力能源。因此,在电力系统当中,对新能源发电技术的应用 十分重要。在合理利用不同类型发电技术的同时,采取 有效的保障措施提供支持,使应用效果达到最佳。

参考文献

[1]陈海东,蒙飞,王庆,等.储能系统和新能源发电装机容量对电力系统性能的影响[J].储能科学与技术,2023,12(2):477-485.

[2] 关新,吴世玮,解雨琪,等.储能技术在新能源电力系统中的应用分析[]]. 蓄电池,2023,60(4):181-185.

[3] 高龙. 新能源发电技术在电力系统中的应用效果浅谈[J]. 机械与电子控制工程, 2023, 44 (32): 155-156.

[4] 蔡楠, 孙艳波, 冀勇. 电力系统中新能源发电技术的应用探究[[]. 电力设备管理, 2023, 31 (20): 235-237.

[5] 俞年昌,赵大威,王伟.新能源发电技术在电力系统中的应用[[].电力设备管理,2023,26(15):65-67.