离心泵系列设计中的振动与噪音控制策略探讨

仇伟伟¹ 徐胜权²

- 1. 利欧集团浙江泵业有限公司 浙江温岭 317500
- 2. 利欧集团泵业科技有限公司 浙江杭州 310000

摘 要:本文围绕离心泵系列设计中的振动与噪音控制策略展开探讨。先阐述离心泵在工业、民用等领域的重要应用及因振动和噪音带来的问题。接着介绍离心泵产生振动与噪音的理论基础,包括机械原理、流体力学原理等。然后详细分析控制振动与噪音的策略,如优化结构设计、改进制造工艺、采用减振降噪装置等。旨在通过合理策略降低离心泵振动与噪音,提高其运行稳定性、效率和使用寿命、为离心泵系列设计提供理论参考与实践指导。

关键词: 离心泵; 振动控制; 噪音控制; 结构设计; 制造工艺

引言

离心泵作为一种常见的流体输送设备,广泛应用于石油化工、电力、冶金、给排水等众多领域。它通过叶轮的高速旋转使液体获得能量,实现液体的输送。然而,在离心泵的运行过程中,振动与噪音问题较为突出。这些问题不仅会影响离心泵的工作效率和使用寿命,还可能对周围环境和操作人员的健康造成不良影响。因此,在离心泵系列设计中,深入探讨振动与噪音的控制策略具有重要的现实意义。

一、离心泵产生振动与噪音的理论基础

1. 机械原理导致的振动与噪音

离心泵的机械结构是产生振动与噪音的重要原因之一。叶轮作为离心泵的核心部件,其不平衡问题不容忽视。在制造过程中,由于加工精度的限制或材料的不均匀性,叶轮的质心可能偏离旋转中心。当叶轮高速旋转时,这种不平衡会产生离心力,该离心力随着叶轮的转动周期性变化,从而引发泵体的振动,并产生噪音。例如,叶轮的叶片厚度不一致,会导致质量分布不均,在旋转时产生不平衡力。泵轴的弯曲变形也是产生振动的重要因素。泵轴在运行过程中承受着来自叶轮、液体以及其他部件的负荷。如果泵轴的刚度不足或安装不当,就容易发生弯曲变形。弯曲的泵轴在旋转时会产生额外的离心力,破坏泵的旋转平衡,进而产生振动和噪音。轴承在离心泵的运行中起着支撑和减少摩擦的作用。然而,轴承的磨损、松动或润滑不良,会使轴承的运行状态恶化。磨损的轴承会增加摩擦阻力,导致轴承温度升

高,同时产生振动和噪音。松动的轴承会使泵轴在旋转 时产生晃动,进一步加剧振动。而润滑不良会使轴承的 摩擦增大,降低其使用寿命,同时引发噪音。联轴器是 连接泵轴和电机轴的重要部件。如果联轴器不对中,会 导致泵轴和电机轴之间的力传递不均匀。在旋转过程中, 这种不均匀的力传递会使泵产生振动,并伴随噪音。例 如,联轴器的轴向偏差或径向偏差过大,都会影响泵的 正常运行,产生振动和噪音。

2.流体力学原理导致的振动与噪音

从流体力学角度看, 离心泵内部的流体流动是产生 振动与噪音的另一个重要因素。气蚀现象是离心泵中常 见的问题, 当液体在泵内流动时, 在叶轮进口等低压区 域,液体的压力可能低于其饱和蒸汽压,此时液体就会 发生汽化形成气泡。这些气泡随着液体流动到高压区域 时,又会迅速破裂,产生强烈的冲击力。这种冲击力会 作用在叶轮和泵体的壁面上,引起泵体的振动和噪音。 长期的气蚀还会导致叶轮和泵体的损坏,降低泵的使用 寿命。流道内的流体湍流也是产生噪音的重要原因。在 离心泵的流道中, 当流体的流速较高或流道形状不规则 时,流体就会处于湍流状态。湍流状态下,流体的速度 和压力分布不均匀, 会对泵的壁面产生不稳定的作用力。 这种不稳定的作用力会使泵体产生振动,并通过空气传 播形成噪音。液体的流量和压力波动也会引起泵的振动 和噪音。在离心泵的启动、停止或调节过程中,液体的 流量和压力会发生变化。例如,在调节阀门时,阀门的 开度变化会导致液体的流量和压力波动。这种波动会使泵 内的流体流动状态发生改变,从而引起泵的振动和噪音。

3. 电磁原理导致的振动与噪音

对于电动离心泵, 电磁力也是产生振动与噪音的原 因之一。电机的电磁振动主要源于定子和转子之间的电 磁相互作用。当电机运行时, 定子绕组中通入交流电, 会产生旋转磁场。转子绕组中的电流在该磁场的作用下, 会受到电磁力的作用而旋转。如果定子和转子之间的电 磁力分布不均匀,或者存在谐波成分,就会引起电机的 振动。这种振动会通过电机与泵的连接部件传递到离心 泵上,产生噪音。电机的磁路不平衡也是导致电磁振动 和噪音的一个因素。磁路不平衡可能是由于电机的制造 误差、磁材料的不均匀性或安装不当等原因引起的。磁 路不平衡会导致磁场分布不均匀,从而产生不平衡的电 磁力,引发电机的振动和噪音。例如,电机的定子铁芯 的硅钢片叠装不整齐, 会导致磁路的磁阻不均匀, 产生 磁路不平衡。气隙不均匀同样会对电机的电磁性能产生 影响。气隙是定子和转子之间的空隙,气隙的大小和均 匀性会影响电磁力的分布。如果气隙不均匀,会使电磁 力在圆周方向上分布不一致,从而引起电机的振动和噪 音。此外,气隙的大小还会影响电机的性能,气隙过大 或过小都会导致电机的效率降低,同时增加振动和噪音 的产生。

二、离心泵系列设计中控制振动与噪音的策略

1.优化结构设计

在离心泵的结构设计方面,可采取多种措施来控制 振动与噪音。首先,提高叶轮的平衡精度是关键。在制 造叶轮时,采用高精度的加工设备和工艺,严格控制叶 轮的质量分布。例如,通过精确的数控加工,确保叶轮 的叶片形状和尺寸一致,减少质量偏差。在叶轮制造完 成后, 进行动平衡测试, 通过在叶轮上添加或去除材料, 使叶轮的质心与旋转中心重合,从而减少因不平衡产生 的振动和噪音。合理设计泵轴的直径和长度也非常重要。 根据泵的工作要求和负荷情况, 计算出合适的泵轴直径, 以提高泵轴的刚度。适当缩短泵轴的长度,可以减少泵 轴的弯曲变形。同时, 选择合适的泵轴材料, 提高其强 度和韧性。例如,采用高强度合金钢制造泵轴,能够提 高泵轴的抗弯曲能力,减少振动的产生。采用合适的轴 承类型和规格, 并保证良好的润滑, 对于降低轴承的振 动和噪音至关重要。根据泵的工作条件,选择具有良好 耐磨性和抗振动性能的轴承。例如,对于高速旋转的离 心泵,可选用滚动轴承,并采用合适的润滑脂进行润滑。 定期检查和更换润滑脂,确保轴承的良好运行状态,减 少因轴承问题产生的振动和噪音。优化流道设计是减少流体引起的振动和噪音的有效措施。采用光滑的流道表面,减少流体的摩擦阻力,使流体在泵内的流动更加顺畅。合理设计流道的形状和尺寸,避免流道内出现漩涡、回流等不良流动现象。例如,采用渐缩或渐扩的流道设计,使流体在流道内的速度和压力分布更加均匀,减少气蚀和湍流的发生,从而降低振动和噪音。

2.改进制造工艺

制造工艺对离心泵的振动与噪音控制也至关重要。 提高零部件的加工精度是减少振动和噪音的基础。在加 工叶轮、泵轴等关键零部件时,采用先进的加工技术和 设备,严格控制加工误差。例如,采用五轴联动加工中 心加工叶轮, 能够精确控制叶片的形状和尺寸, 减少制 造误差,提高叶轮的质量。采用先进的装配工艺,确保 零部件之间的安装精度。在装配过程中,使用高精度的 测量工具和装配设备,严格按照装配工艺要求进行操作。 例如,在安装联轴器时,采用激光对中仪进行对中调整, 确保泵轴和电机轴的同轴度,减少因不对中产生的振动 和噪音。同时,在装配过程中,注意零部件的清洁和润 滑,避免杂质进入轴承等关键部位,影响泵的运行稳定 性。对关键零部件进行表面处理,能够提高其耐磨性和 抗气蚀性能,减少因磨损和气蚀引起的振动和噪音。例 如,对叶轮进行表面硬化处理,如渗碳、氮化等,能够 提高叶轮表面的硬度,减少叶片的磨损。对叶轮进行涂 层处理,如喷涂耐磨涂层或防气蚀涂层,能够有效防止气 蚀的发生, 延长叶轮的使用寿命, 同时降低振动和噪音。

3. 采用减振降噪装置

为了进一步控制离心泵的振动与噪音,可以采用各种减振降噪装置。在泵的基础上安装隔振器,如橡胶隔振器、弹簧隔振器等,能够有效隔离泵的振动传递到基础和周围结构上,减少振动的传播。橡胶隔振器具有良好的弹性和阻尼性能,能够吸收泵的振动能量,降低振动的传递效率。弹簧隔振器则适用于较大负荷的离心泵,能够提供稳定的支撑和隔振效果。在泵的进出口管道上安装柔性接头,能够吸收管道的振动和位移,降低管道系统对泵的振动影响。柔性接头具有一定的弹性变形能力,能够补偿管道因热胀冷缩、安装误差等原因产生的位移。同时,柔性接头还能够减少管道内流体的压力波动对泵的影响,降低振动和噪音的产生。例如,采用金属波纹管柔性接头或橡胶柔性接头,能够有效地隔离管道的振动,提高泵的运行稳定性。使用隔音罩将离心泵

封闭起来,能够阻止噪音的传播,降低噪音对周围环境 的影响。隔音罩通常采用隔音材料制成,如吸音棉、隔 音板等,能够吸收和反射噪音。在隔音罩内添加吸音材 料,如玻璃棉、岩棉等,能够进一步提高隔音效果。

三、离心泵系列设计中振动与噪音控制的相关考虑 1.成本与效益的平衡

在实施振动与噪音控制策略时,需要考虑成本与效益的平衡。一些控制措施,如采用高精度的制造工艺、安装昂贵的减振降噪装置等,会增加离心泵的制造成本。例如,采用五轴联动加工中心加工叶轮,设备成本和加工成本都较高;安装高性能的隔振器和隔音罩,也会增加设备的采购成本。因此,需要在保证控制效果的前提下,选择合适的控制策略,使成本与效益达到最佳平衡。可以通过技术经济分析,评估不同控制策略的成本和效益。对各种控制措施的成本进行详细的核算,包括设备采购成本、加工成本、安装成本、维护成本等。同时,评估这些控制措施对振动和噪音的控制效果,以及对泵的性能和使用寿命的影响。通过比较不同控制策略的成本和效益,选择最具性价比的方案。

2. 与其他性能的协调

离心泵的振动与噪音控制策略应与其他性能要求相协调。在优化结构设计以降低振动与噪音时,不能牺牲泵的效率和流量等性能指标。例如,在设计流道时,如果过于追求流道的光滑度而改变流道的形状,可能会影响泵的水力性能,导致泵的效率降低或流量不足。因此,在设计过程中,需要综合考虑各种因素,通过优化设计和合理选型,实现振动与噪音控制与其他性能的协调发展。在采用减振降噪装置时,要确保其不会对泵的安装、

操作和维护产生不利影响。例如,安装隔音罩时,要考虑到隔音罩的通风和散热问题,避免因通风不良导致泵的温度升高,影响泵的正常运行。同时,隔音罩的结构应便于操作人员进行日常的检查和维护,不影响泵的操作便利性。在选择控制策略时,还需要考虑到泵的可靠性和稳定性。一些控制措施可能会增加泵的复杂性,从而影响泵的可靠性。因此,需要在控制振动与噪音的同时,确保泵的可靠性和稳定性不受影响。例如,在采用新型的减振降噪技术时,要进行充分的试验和验证,确保其在实际运行中的可靠性。

结论

本文系统探讨了离心泵系列设计中的振动与噪音控制策略。明确了离心泵产生振动与噪音的机械、流体力学和电磁等理论基础,提出了优化结构设计、改进制造工艺、采用减振降噪装置等控制策略,并阐述了相关考虑因素。通过合理应用这些策略,有望有效降低离心泵的振动与噪音,提升其运行性能和可靠性。但实际应用中仍需不断探索和改进,以更好地满足不同工况和需求,促进离心泵技术的发展。

参考文献

[1] 马思楠.基于颗粒阻尼技术的离心泵管道减振研究[D].北京化工大学,2024.

[2]付晴川.大型光源类工程储存环结构微振动控制概念设计方法研究[D].华北水利水电大学,2023.

[3] 江琦. 梯级泵站管道耦联振动特性与振动控制研究[D]. 华北水利水电大学, 2017.