COVID-19感染后肺血栓栓塞症相关病因机制研究进展

董  聪
青海大学附属医院

摘要


新型冠状病毒感染(Corona Virus Disease 2019,COVID-19)是由严重急性呼吸综合症冠状病毒2型
(SARS-CoV-2)引起的传染性疾病。近年来,越来越多的研究表明,除常见的呼吸道症状外,COVID-19也会引
起凝血功能障碍,并可能诱发血栓形成、肺血栓栓塞症(PTE)等,严重危害患者健康。研究COVID-19患者感染
后发生PTE的病因机制对评估病情、改善预后,提高患者生存质量有重要的指导意义。本文对COVID-19患者感染
后发生PTE的相关研究进行综述,从而为临床评估及防治干预提供一定参考。

关键词


新型冠状病毒感染;肺血栓栓塞症;病因机制

全文:

PDF


参考


[1]Stein SR, Ramelli SC, Grazioli A, et al. SARSCoV-2 infection and persistence in the human body and

brain at autopsy[J]. Nature, 2022, 612(7941): 758-763.

[2]Li Q, Guan X, Wu P, et al. Early Transmission

Dynamics in Wuhan, China, of Novel Coronavirus–Infected

Pneumonia[J]. New England Journal of Medicine, 2020,

382(13): 1199-1207.

[3]Chan JFW, Yuan S, Kok KH, et al. A familial cluster

of pneumonia associated with the 2019 novel coronavirus

indicating person-to-person transmission: a study of a family

cluster[J]. The Lancet, 2020, 395(10223): 514-523.

[4]Atzrodt CL, Maknojia I, McCarthy RDP, et al. A

Guide to COVID‐19: a global pandemic caused by the novel

coronavirus SARS‐CoV‐2[J]. The FEBS Journal, 2020,

287(17): 3633-3650.

[5]Elrobaa IH, New KJ. COVID-19: Pulmonary and

Extra Pulmonary Manifestations[J]. Frontiers in Public Health,

2021, 9: 711616.

[6]Connors JM, Levy JH. COVID-19 and its

implications for thrombosis and anticoagulation[J]. Blood,

2020, 135(23): 2033-2040.

[7]Baccellieri D, Bertoglio L, Apruzzi L, et al. Incidence

of deep venous thrombosis in COVID-19 hospitalized

patients during the first peak of the Italian outbreak[J].

Phlebology: The Journal of Venous Disease, 2021, 36(5):

375-383.

[8]Zhang L, Feng X, Zhang D, et al. Deep Vein

Thrombosis in Hospitalized Patients With COVID-19 in

Wuhan, China: Prevalence, Risk Factors, and Outcome[J].

Circulation, 2020, 142(2): 114-128.

[9]Safiabadi Tali SH, LeBlanc JJ, Sadiq Z, et al. Tools

and Techniques for Severe Acute Respiratory Syndrome

Coronavirus 2 (SARS-CoV-2)/COVID-19 Detection[J].

Clinical Microbiology Reviews, 2021, 34(3): e00228-20.

[10]Lu R, Zhao X, Li J, et al. Genomic characterisation

and epidemiology of 2019 novel coronavirus: implications

for virus origins and receptor binding[J]. The Lancet, 2020,

395(10224): 565-574.

[11]Lukassen S, Chua RL, Trefzer T, et al. SARS

‐CoV‐2 receptor ACE 2 and TMPRSS 2 are primarily

expressed in bronchial transient secretory cells[J]. The EMBO

Journal, 2020, 39(10): e105114.

[12]Jackson CB, Farzan M, Chen B, et al. Mechanisms

of SARS-CoV-2 entry into cells[J]. Nature Reviews

Molecular Cell Biology, 2022, 23(1): 3-20.

[13]Hh V, Jw H, M L, et al. New fundamentals in

hemostasis[J]. Physiological reviews, 2013, 93(1).

[14]Leentjens J, Haaps TF van, Wessels PF, et al.

COVID-19-associated coagulopathy and antithrombotic

agents— lessons after 1 year[J]. The Lancet Haematology,

2021, 8(7): e524-e533.

[15]Gupta N, Zhao YY, Evans CE. The stimulation of

thrombosis by hypoxia[J]. Thrombosis Research, 2019, 181:

77-83.

[16]Hou YJ, Okuda K, Edwards CE, et al. SARSCoV-2 Reverse Genetics Reveals a Variable Infection

Gradient in the Respiratory Tract[J]. Cell, 2020, 182(2): 429-

446.e14.

[17]Sungnak W, Huang N, Bécavin C, et al. SARSCoV-2 entry factors are highly expressed in nasal epithelial

cells together with innate immune genes[J]. Nature Medicine,

2020, 26(5): 681-687.

[18]Giamarellos-Bourboulis EJ, Netea MG, Rovina

N, et al. Complex Immune Dysregulation in COVID-

19 Patients with Severe Respiratory Failure[J]. Cell Host &

Microbe, 2020, 27(6): 992-1000.e3.

[19]Lucas C, Wong P, Klein J, et al. Longitudinal

analyses reveal immunological misfiring in severe COVID-

19[J]. Nature, 2020, 584(7821): 463-469.

[20]McGonagle D, O’Donnell JS, Sharif K, et al.

Immune mechanisms of pulmonary intravascular coagulopathy

in COVID-19 pneumonia[J]. The Lancet. Rheumatology,

2020, 2(7): e437-e445.

[21]Goshua G, Pine AB, Meizlish ML, et al.

Endotheliopathy in COVID-19-associated coagulopathy:

evidence from a single-centre, cross-sectional study[J]. The

Lancet. Haematology, 2020, 7(8): e575-e582.

[22]Englert H, Rangaswamy C, Deppermann C, et

al. Defective NET clearance contributes to sustained FXII

activation in COVID-19-associated pulmonary thromboinflammation[J]. EBioMedicine, 2021, 67: 103382.

[23]Godoy LC, Goligher EC, Lawler PR, et al.

Anticipating and managing coagulopathy and thrombotic

manifestations of severe COVID-19[J]. CMAJ: Canadian

Medical Association journal = journal de l’Association

medicale canadienne, 2020, 192(40): E1156-E1161.

[24]Flammer AJ, Anderson T, Celermajer DS, et al. The

assessment of endothelial function: from research into clinical

practice[J]. Circulation, 2012, 126(6): 753-767.

[25]Bonetti PO, Lerman LO, Lerman A. Endothelial

Dysfunction: A Marker of Atherosclerotic Risk[J].

Arteriosclerosis, Thrombosis, and Vascular Biology, 2003,

23(2): 168-175.

[26]Perico L, Benigni A, Casiraghi F, et al. Immunity,

endothelial injury and complement-induced coagulopathy in

COVID-19[J]. Nature Reviews Nephrology, 2021, 17(1):

46-64.

[27]Danzi GB, Loffi M, Galeazzi G, et al. Acute

pulmonary embolism and COVID-19 pneumonia: a random

association?[J]. European Heart Journal, 2020, 41(19): 1858.

[28]Evans PC, Rainger GE, Mason JC, et al. Endothelial

dysfunction in COVID-19: a position paper of the ESC

Working Group for Atherosclerosis and Vascular Biology,

and the ESC Council of Basic Cardiovascular Science[J].

Cardiovascular Research, 2020, 116(14): 2177-2184.

[29]Fauvel C, Weizman O, Trimaille A, et al. Pulmonary

embolism in COVID-19 patients: a French multicentre cohort

study[J]. European Heart Journal, 2020, 41(32): 3058-3068.

[30]Tang N, Li D, Wang X, et al. Abnormal coagulation

parameters are associated with poor prognosis in patients with

novel coronavirus pneumonia[J]. Journal of thrombosis and

haemostasis: JTH, 2020, 18(4): 844-847.

[31]Varga Z, Flammer AJ, Steiger P, et al. Endothelial

cell infection and endotheliitis in COVID-19[J]. The Lancet,

2020, 395(10234): 1417-1418.

[32]Yang Y, Shen C, Li J, et al. Plasma IP-10 and

MCP-3 levels are highly associated with disease severity and

predict the progression of COVID-19[J]. Journal of Allergy

and Clinical Immunology, 2020, 146(1): 119-127.e4.

[33]Mehta P, McAuley DF, Brown M, et al.

COVID-19: consider cytokine storm syndromes and

immunosuppression[J]. Lancet (London, England), 2020,

395(10229): 1033-1034.

[34]WONG CK, LAM CWK, WU AKL, et al.

Plasma inflammatory cytokines and chemokines in severe

acute respiratory syndrome[J]. Clinical and Experimental

Immunology, 2004, 136(1): 95-103.

[35]Kim ES, Choe PG, Park WB, et al. Clinical

Progression and Cytokine Profiles of Middle East Respiratory

Syndrome Coronavirus Infection[J]. Journal of Korean

Medical Science, 2016, 31(11): 1717-1725.

[36]Ruan Q, Yang K, Wang W, et al. Clinical predictors

of mortality due to COVID-19 based on an analysis of data of

150 patients from Wuhan, China[J]. Intensive Care Medicine,

2020, 46(5): 846-848.

[37]Phan LT, Nguyen TV, Luong QC, et al.

Importation and Human-to-Human Transmission of a

Novel Coronavirus in Vietnam[J]. New England Journal of

Medicine, 2020, 382(9): 872-874.

[38]Katayama S, Koyama K, Shima J, et al.

Thrombomodulin, Plasminogen Activator Inhibitor-1 and

Protein C Levels, and Organ Dysfunction in Sepsis[J]. Critical

Care Explorations, 2019, 1(5): e0013.

[39]Levi M, van der Poll T. Coagulation and sepsis[J].

Thrombosis Research, 2017, 149: 38-44.

[40]Moore HB, Barrett CD, Moore EE, et al. Is there a

role for tissue plasminogen activator as a novel treatment for

refractory COVID-19 associated acute respiratory distress

syndrome?[J]. The Journal of Trauma and Acute Care

Surgery, 2020, 88(6): 713-714.

[41]Whyte CS, Morrow GB, Mitchell JL, et al.

Fibrinolytic abnormalities in acute respiratory distress

syndrome (ARDS) and versatility of thrombolytic drugs to

treat COVID-19[J]. Journal of thrombosis and haemostasis:

JTH, 2020, 18(7): 1548-1555.

[42]Katsoularis I, Fonseca-Rodríguez O, Farrington

P, et al. Risks of deep vein thrombosis, pulmonary embolism,

and bleeding after covid-19: nationwide self-controlled cases

series and matched cohort study[J]. BMJ, 2022: e069590.

[43]Vassiliou AG, Keskinidou C, Jahaj E, et al. ICU

Admission Levels of Endothelial Biomarkers as Predictors of

Mortality in Critically Ill COVID-19 Patients[J]. Cells, 2021,

10(1): 186.

[44]Eck RJ, Hulshof L, Wiersema R, et al. Incidence,

prognostic factors, and outcomes of venous thromboembolism

in critically ill patients: data from two prospective cohort

studies[J]. Critical Care, 2021, 25(1): 27.

[45]Klok FA, Kruip MJHA, van der Meer NJM, et al.

Incidence of thrombotic complications in critically ill ICU

patients with COVID-19[J]. Thrombosis Research, 2020,

191: 145-147.

[46]Raisi-Estabragh Z, Cooper J, Salih A, et al.

Cardiovascular disease and mortality sequelae of COVID-19

in the UK Biobank[J]. Heart, 2023, 109(2): 119-126.

[47]Katsoularis I, Fonseca-Rodríguez O, Farrington P,

et al. Risk of acute myocardial infarction and ischaemic stroke

following COVID-19 in Sweden: a self-controlled case series

and matched cohort study[J]. The Lancet, 2021, 398(10300):

599-607.

[48]Weitz JI, Chan NC. Novel antithrombotic strategies

for treatment of venous thromboembolism[J]. Blood, 2020,

135(5): 351-359.

[49]Renner E, Barnes GD. Antithrombotic Management

of Venous Thromboembolism: JACC Focus Seminar[J].

Journal of the American College of Cardiology, 2020, 76(18):

2142-2154.

[50]高钰琪.基于新冠肺炎病理生理机制的治疗策略

[J].中国病理生理杂志,2020,36(3):568-572+576.


Refbacks

  • 当前没有refback。