COVID-19感染后肺血栓栓塞症相关病因机制研究进展
摘要
(SARS-CoV-2)引起的传染性疾病。近年来,越来越多的研究表明,除常见的呼吸道症状外,COVID-19也会引
起凝血功能障碍,并可能诱发血栓形成、肺血栓栓塞症(PTE)等,严重危害患者健康。研究COVID-19患者感染
后发生PTE的病因机制对评估病情、改善预后,提高患者生存质量有重要的指导意义。本文对COVID-19患者感染
后发生PTE的相关研究进行综述,从而为临床评估及防治干预提供一定参考。
关键词
全文:
PDF参考
[1]Stein SR, Ramelli SC, Grazioli A, et al. SARSCoV-2 infection and persistence in the human body and
brain at autopsy[J]. Nature, 2022, 612(7941): 758-763.
[2]Li Q, Guan X, Wu P, et al. Early Transmission
Dynamics in Wuhan, China, of Novel Coronavirus–Infected
Pneumonia[J]. New England Journal of Medicine, 2020,
382(13): 1199-1207.
[3]Chan JFW, Yuan S, Kok KH, et al. A familial cluster
of pneumonia associated with the 2019 novel coronavirus
indicating person-to-person transmission: a study of a family
cluster[J]. The Lancet, 2020, 395(10223): 514-523.
[4]Atzrodt CL, Maknojia I, McCarthy RDP, et al. A
Guide to COVID‐19: a global pandemic caused by the novel
coronavirus SARS‐CoV‐2[J]. The FEBS Journal, 2020,
287(17): 3633-3650.
[5]Elrobaa IH, New KJ. COVID-19: Pulmonary and
Extra Pulmonary Manifestations[J]. Frontiers in Public Health,
2021, 9: 711616.
[6]Connors JM, Levy JH. COVID-19 and its
implications for thrombosis and anticoagulation[J]. Blood,
2020, 135(23): 2033-2040.
[7]Baccellieri D, Bertoglio L, Apruzzi L, et al. Incidence
of deep venous thrombosis in COVID-19 hospitalized
patients during the first peak of the Italian outbreak[J].
Phlebology: The Journal of Venous Disease, 2021, 36(5):
375-383.
[8]Zhang L, Feng X, Zhang D, et al. Deep Vein
Thrombosis in Hospitalized Patients With COVID-19 in
Wuhan, China: Prevalence, Risk Factors, and Outcome[J].
Circulation, 2020, 142(2): 114-128.
[9]Safiabadi Tali SH, LeBlanc JJ, Sadiq Z, et al. Tools
and Techniques for Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2)/COVID-19 Detection[J].
Clinical Microbiology Reviews, 2021, 34(3): e00228-20.
[10]Lu R, Zhao X, Li J, et al. Genomic characterisation
and epidemiology of 2019 novel coronavirus: implications
for virus origins and receptor binding[J]. The Lancet, 2020,
395(10224): 565-574.
[11]Lukassen S, Chua RL, Trefzer T, et al. SARS
‐CoV‐2 receptor ACE 2 and TMPRSS 2 are primarily
expressed in bronchial transient secretory cells[J]. The EMBO
Journal, 2020, 39(10): e105114.
[12]Jackson CB, Farzan M, Chen B, et al. Mechanisms
of SARS-CoV-2 entry into cells[J]. Nature Reviews
Molecular Cell Biology, 2022, 23(1): 3-20.
[13]Hh V, Jw H, M L, et al. New fundamentals in
hemostasis[J]. Physiological reviews, 2013, 93(1).
[14]Leentjens J, Haaps TF van, Wessels PF, et al.
COVID-19-associated coagulopathy and antithrombotic
agents— lessons after 1 year[J]. The Lancet Haematology,
2021, 8(7): e524-e533.
[15]Gupta N, Zhao YY, Evans CE. The stimulation of
thrombosis by hypoxia[J]. Thrombosis Research, 2019, 181:
77-83.
[16]Hou YJ, Okuda K, Edwards CE, et al. SARSCoV-2 Reverse Genetics Reveals a Variable Infection
Gradient in the Respiratory Tract[J]. Cell, 2020, 182(2): 429-
446.e14.
[17]Sungnak W, Huang N, Bécavin C, et al. SARSCoV-2 entry factors are highly expressed in nasal epithelial
cells together with innate immune genes[J]. Nature Medicine,
2020, 26(5): 681-687.
[18]Giamarellos-Bourboulis EJ, Netea MG, Rovina
N, et al. Complex Immune Dysregulation in COVID-
19 Patients with Severe Respiratory Failure[J]. Cell Host &
Microbe, 2020, 27(6): 992-1000.e3.
[19]Lucas C, Wong P, Klein J, et al. Longitudinal
analyses reveal immunological misfiring in severe COVID-
19[J]. Nature, 2020, 584(7821): 463-469.
[20]McGonagle D, O’Donnell JS, Sharif K, et al.
Immune mechanisms of pulmonary intravascular coagulopathy
in COVID-19 pneumonia[J]. The Lancet. Rheumatology,
2020, 2(7): e437-e445.
[21]Goshua G, Pine AB, Meizlish ML, et al.
Endotheliopathy in COVID-19-associated coagulopathy:
evidence from a single-centre, cross-sectional study[J]. The
Lancet. Haematology, 2020, 7(8): e575-e582.
[22]Englert H, Rangaswamy C, Deppermann C, et
al. Defective NET clearance contributes to sustained FXII
activation in COVID-19-associated pulmonary thromboinflammation[J]. EBioMedicine, 2021, 67: 103382.
[23]Godoy LC, Goligher EC, Lawler PR, et al.
Anticipating and managing coagulopathy and thrombotic
manifestations of severe COVID-19[J]. CMAJ: Canadian
Medical Association journal = journal de l’Association
medicale canadienne, 2020, 192(40): E1156-E1161.
[24]Flammer AJ, Anderson T, Celermajer DS, et al. The
assessment of endothelial function: from research into clinical
practice[J]. Circulation, 2012, 126(6): 753-767.
[25]Bonetti PO, Lerman LO, Lerman A. Endothelial
Dysfunction: A Marker of Atherosclerotic Risk[J].
Arteriosclerosis, Thrombosis, and Vascular Biology, 2003,
23(2): 168-175.
[26]Perico L, Benigni A, Casiraghi F, et al. Immunity,
endothelial injury and complement-induced coagulopathy in
COVID-19[J]. Nature Reviews Nephrology, 2021, 17(1):
46-64.
[27]Danzi GB, Loffi M, Galeazzi G, et al. Acute
pulmonary embolism and COVID-19 pneumonia: a random
association?[J]. European Heart Journal, 2020, 41(19): 1858.
[28]Evans PC, Rainger GE, Mason JC, et al. Endothelial
dysfunction in COVID-19: a position paper of the ESC
Working Group for Atherosclerosis and Vascular Biology,
and the ESC Council of Basic Cardiovascular Science[J].
Cardiovascular Research, 2020, 116(14): 2177-2184.
[29]Fauvel C, Weizman O, Trimaille A, et al. Pulmonary
embolism in COVID-19 patients: a French multicentre cohort
study[J]. European Heart Journal, 2020, 41(32): 3058-3068.
[30]Tang N, Li D, Wang X, et al. Abnormal coagulation
parameters are associated with poor prognosis in patients with
novel coronavirus pneumonia[J]. Journal of thrombosis and
haemostasis: JTH, 2020, 18(4): 844-847.
[31]Varga Z, Flammer AJ, Steiger P, et al. Endothelial
cell infection and endotheliitis in COVID-19[J]. The Lancet,
2020, 395(10234): 1417-1418.
[32]Yang Y, Shen C, Li J, et al. Plasma IP-10 and
MCP-3 levels are highly associated with disease severity and
predict the progression of COVID-19[J]. Journal of Allergy
and Clinical Immunology, 2020, 146(1): 119-127.e4.
[33]Mehta P, McAuley DF, Brown M, et al.
COVID-19: consider cytokine storm syndromes and
immunosuppression[J]. Lancet (London, England), 2020,
395(10229): 1033-1034.
[34]WONG CK, LAM CWK, WU AKL, et al.
Plasma inflammatory cytokines and chemokines in severe
acute respiratory syndrome[J]. Clinical and Experimental
Immunology, 2004, 136(1): 95-103.
[35]Kim ES, Choe PG, Park WB, et al. Clinical
Progression and Cytokine Profiles of Middle East Respiratory
Syndrome Coronavirus Infection[J]. Journal of Korean
Medical Science, 2016, 31(11): 1717-1725.
[36]Ruan Q, Yang K, Wang W, et al. Clinical predictors
of mortality due to COVID-19 based on an analysis of data of
150 patients from Wuhan, China[J]. Intensive Care Medicine,
2020, 46(5): 846-848.
[37]Phan LT, Nguyen TV, Luong QC, et al.
Importation and Human-to-Human Transmission of a
Novel Coronavirus in Vietnam[J]. New England Journal of
Medicine, 2020, 382(9): 872-874.
[38]Katayama S, Koyama K, Shima J, et al.
Thrombomodulin, Plasminogen Activator Inhibitor-1 and
Protein C Levels, and Organ Dysfunction in Sepsis[J]. Critical
Care Explorations, 2019, 1(5): e0013.
[39]Levi M, van der Poll T. Coagulation and sepsis[J].
Thrombosis Research, 2017, 149: 38-44.
[40]Moore HB, Barrett CD, Moore EE, et al. Is there a
role for tissue plasminogen activator as a novel treatment for
refractory COVID-19 associated acute respiratory distress
syndrome?[J]. The Journal of Trauma and Acute Care
Surgery, 2020, 88(6): 713-714.
[41]Whyte CS, Morrow GB, Mitchell JL, et al.
Fibrinolytic abnormalities in acute respiratory distress
syndrome (ARDS) and versatility of thrombolytic drugs to
treat COVID-19[J]. Journal of thrombosis and haemostasis:
JTH, 2020, 18(7): 1548-1555.
[42]Katsoularis I, Fonseca-Rodríguez O, Farrington
P, et al. Risks of deep vein thrombosis, pulmonary embolism,
and bleeding after covid-19: nationwide self-controlled cases
series and matched cohort study[J]. BMJ, 2022: e069590.
[43]Vassiliou AG, Keskinidou C, Jahaj E, et al. ICU
Admission Levels of Endothelial Biomarkers as Predictors of
Mortality in Critically Ill COVID-19 Patients[J]. Cells, 2021,
10(1): 186.
[44]Eck RJ, Hulshof L, Wiersema R, et al. Incidence,
prognostic factors, and outcomes of venous thromboembolism
in critically ill patients: data from two prospective cohort
studies[J]. Critical Care, 2021, 25(1): 27.
[45]Klok FA, Kruip MJHA, van der Meer NJM, et al.
Incidence of thrombotic complications in critically ill ICU
patients with COVID-19[J]. Thrombosis Research, 2020,
191: 145-147.
[46]Raisi-Estabragh Z, Cooper J, Salih A, et al.
Cardiovascular disease and mortality sequelae of COVID-19
in the UK Biobank[J]. Heart, 2023, 109(2): 119-126.
[47]Katsoularis I, Fonseca-Rodríguez O, Farrington P,
et al. Risk of acute myocardial infarction and ischaemic stroke
following COVID-19 in Sweden: a self-controlled case series
and matched cohort study[J]. The Lancet, 2021, 398(10300):
599-607.
[48]Weitz JI, Chan NC. Novel antithrombotic strategies
for treatment of venous thromboembolism[J]. Blood, 2020,
135(5): 351-359.
[49]Renner E, Barnes GD. Antithrombotic Management
of Venous Thromboembolism: JACC Focus Seminar[J].
Journal of the American College of Cardiology, 2020, 76(18):
2142-2154.
[50]高钰琪.基于新冠肺炎病理生理机制的治疗策略
[J].中国病理生理杂志,2020,36(3):568-572+576.
Refbacks
- 当前没有refback。