大理岩矿床地质特征及分类探讨

罗 文江1, 陆 铭禹1, 慕 志盈1, 余 何2
1、桂林理工大学地球科学学院
2、桂林理工大学地球科学学院;贺州学院地质实验室

摘要


大理岩矿床作为重要非金属矿产,传统分类依赖宏观地质特征,存在标准模糊、主观性强问题,难界定多
期叠加矿床及追溯原岩与早期成矿环境。本文梳理其地质特征与现有分类,整合碳氧稳定同位素及变质重结晶等多
因子数据,构建“地质特征-同位素参数-变质重结晶机制”定性-定量一体化分类模型。研究显示,大理岩碳氧
同位素可示踪流体来源与原岩环境,δ13C多继承原岩特征,δ18O易受后期作用呈负偏移。不同成因矿床的同位素
轨迹、重结晶类型及构造-流体特征差异显著。结合实例验证,将原厘定为中低温热液充填型的鄂西东岳大理岩矿
床,修正划分为热液充填型。该模型提升了分类客观性与可重复性,为复杂大理岩矿床成因解析及同类矿勘探提供
新范式。

关键词


碳氧同位素;变质重结晶;地质特征;矿床成因;大理岩矿床

全文:

PDF


参考


[1]朱继存,朱光,宋传中.我国天然碳酸盐类大理

石资源初探[J].石材,2001,(06):14-17.

[2]李峥,林雄,胡元邦.中国主要成因类型大理石地质特征[J].四川地质学报,2016,36(01):97-100.

[3]欧阳斌.内乡县西庙岗米黄玉大理石矿床地质特

征[J].河南地质,1987,(04):19-23.

[4]赵来时,朱明,吴立,等.鄂西东岳中低温热液

充填型大理石矿床的地质特征[J].矿床地质,1999,(03):

44-52.

[5]李勇,孙新胜,董建军,等.辽东玉隆铅锌矿

田控矿构造特征与深部赋矿空间分析[J].地质与勘探,

2010,46(04):583-591.

[6]王一存,王可勇,张淼,等.辽宁小佟家堡子金

矿床成矿流体特征及来源讨论[J].地质与勘探,2015,51

(01):79-87.

[7]Yuanlin C , Huan L , Shangyi G , et al. Marble

trace element and C-O isotope geochemistry of the

Paleoproterozoic Jingshan Group, North China: Insights

into BIF formation during the Lomagundi-Jatuli Event[J].

Precambrian Research, 2023, 395.

[8]Vizer J, Hoefs J. The nature of 18O/16O and 13C/12C

secular trends in sedimentary carbonate rocks [J]. Geochim.

Cosmochim. Acta, 1976, 40: 1387-1395.

[9]冯书文,詹建华,陈军元,等.我国饰面用大理

岩成矿区带划分和成矿规律[J].中国非金属矿工业导刊,

2021,(05):7-13+56.

[10]陶维屏,高锡芬,孙祁.中国非金属矿床成矿系

列:矿床,含矿建造,成矿系列,形成模式[M].北京:

地质出版社,1994.

[11]项新葵.同生角砾岩型与断层角砾岩型大理石矿

床的找矿标志[J].石材,2005,(05):22-27.

[12]《中国矿床发现史·江苏卷》编委会.中国矿床

发现史·江苏卷[M].北京:地质出版社,1996,134-135.

[13]陈宇.雅安市大理石成因类型及资源潜力研究

[D].成都:成都理工大学,2018.

[14]Farquhar G D, Ehleringer J R, Hubick K T. Carbon

isotope discrimination and photosynthesis[J]. Annual Review

ofPlant Physiology and Plant Molecular Biology, 1989, 40(1):

503-537.

[15]赵云,王建平,杨增海等.内蒙古白乃庙铜矿

床稳定同位素地球化学特征及其地质意义.现代地质,

2014,28(6):1103-1111.

[16]崔一鑫.碳酸盐岩碳-硫同位素解释模型研究进

展[J].山西大同大学学报(自然科学版),2024,40(03):

90-96+117.

[17]Hilting A K, Kump L R, Bralower T J. Variations

in the oceanic vertical carbon isotope gradient and their

implicationsfor the paleocene-eocene biological pump[J].

Paleoceanography, 2008, 23(3): 1-15.

[18]徐步台.陈蔡群大理岩的碳氧同位素组成及其地

质应用[J].浙江国土资源,1986,(02):49-54.

[19]李铁军.氧同位素在岩石成因研究的新进展[J].

岩矿测试,2013,32(06):841-849.

[20]Valley, J. W., & Cole, D. R. Stable isotope

geochemistry[J]. Reviews in Mineralogy and Geochemistry,

2001, 43, 1-66.

[21]Hudson J D . Stable isotopes and limestone

lithification[J]. Journal of the Geological Society, 1977, 133:

637 - 660.

[22]Dorobek S L .Petrography, geochemistry, and origin

of burial diagenetic facies, Siluro-Devonian Helderberg

Group (carbonate rocks), central Appalachians[J]. Aapg

Bulletin, 1987, 71(5): 492-514.

[23]Huang Z L , Li W B , Chen J ,et al.Carbon and

oxygen isotope constraints on mantle fluidinvolvement

in the mineralization of the Huize super-large Pb-Zn

deposits, Yunnan Province, China[J]. Journal of Geochemical

Exploration, 2003, 78(03): 637-642.

[24]Veizer J , Ala D , Azmy K ,et al. 87Sr/86Sr, δ13C

and δ18O evolution of Phanerozoic seawater[J]. Chemical

Geology, 1999, 161(1-3): 59-88.

[25]Schidlowski M . Beginnings of terrestrial

life: problems of the early record and implications for

extraterrestrial scenarios[J]. Instruments Methods & Missions

for Astrobiology, 1998. DOI:10.1117/12.319832.

[26]Aharon P . Redox stratification and anoxia of the

early Precambrian oceans: Implications for carbon isotope

excursions and oxidation events[J]. Precambrian Research,

2005, 137(3-4): 207-222.

[27]Melezhik V A , Gorokhov I M , Kuznetsov A B ,et al.

Chemostratigraphy of Neoproterozoic carbonates: implications

for 'blind dating'[J]. Terra Nova, 2010, 13(1): 1-11.

[28]Veizer J , Plumb K A , Clayton R N , et

al.Geochemistry of Precambrian carbonates: V. Late

Paleoproterozoic seawater[J]. Geochimica Et CosmochimicaActa, 1992, 56(6): 875-885.

[29]汤好书,陈衍景,武广,赖勇.辽北辽河群碳

酸盐岩碳-氧同位素特征及其地质意义[J].岩石学报,

2008,24(1):129-138.

[30]Guerrera A, Peacock S M, Knauth L P. Large 18O

and 13C depletions in greenschist facies carbonate rocks,

western Arizona[J]. Geology, 2015, 25(10): 943-946.

[31]Zheng Y F . Carbon-oxygen isotopic covariation in

hydrothermal calcite during degassing of CO2[J].Mineralium

Deposita, 1990, 25(4): 246-250.

[32]Hoefs, J. Stable Isotope Geochemistry[J]. Chem.

Geol. 2004, 211, 47-69.

[33]冯伟民,郑永飞,周建波.大别-苏鲁造山带大

理岩碳氧同位素地球化学研究[J].岩石学报,2003,(03):

468-478.

[34]郑永飞,傅斌,龚冰,等.大别山与榴辉岩共

生大理岩的碳同位素异常[J].科学通报,1997,(21):

2316-2320.

[35]吴元保,郑永飞,龚冰.大别-苏鲁造山带大理

岩中榴辉岩包体的锆石U-Pb年龄及其地质意义[C]//中

国矿物岩石地球化学学会,中国地质学会.2005:126-128.

[36]王清晨,Douglas Rumble.中国大别山双河超高

压变质大理岩的氧、碳同位素[J].中国科学(D辑:地球

科学),1999,(03):214-221.

[37]O’Neil J R. Theoretical and experimental aspects of

isotopic fractionation. In: Stable isotopes in high temperature

geological Processes[J]. Rev. Miner, 1986, 16: 1-40.

[38]沈其韩,耿元生.变质作用分类的历史回顾和新

的试行分类雏议[J].岩石学报,2009,25(08):1737-

1748.


Refbacks

  • 当前没有refback。