基于MICN的风电机组滚动轴承故障诊断研究
摘要
提高其故障诊断能力,本文提出了一种基于MICN的风电机组滚动轴承故障诊断方法。该方法采用滑动重叠采样来
增强数据样本,提高模型的泛化能力;然后利用多尺度等距卷积网络(MICN)来提取轴承故障数据的局部特征和
全局特征;最后,训练softmax多元分类器,实现对轴承故障类型的精确识别。通过CWRU轴承数据进行实验验证,
并将该方法与Transformer、Reformer和Pyraformer模型进行比较,表明本文所提方法在风电机组滚动轴承故障诊断中
具有有效性和优越性。
全文:
PDF参考
[1]World Wind Energy Association. WWEA Halfyear Report 2023: Additional Momentum for Windpower in
2023.
[2]Yao G, Yang HM, Zhou LD, et al. Development
Status and Key Technologies of Large Capacity Offshore
Wind Turbines [J]. Automation of Electric Power Systems,
2021, 45(21): 33-47.
[3]Zhang GY, Li YT, Zhao Y, et al. A Novel Fault
Diagnosis Method for Wind Turbine Based on Adaptive
Multivariate Time-series Convolutional Network Using
SCADA Data [J]. Advanced Engineering Informatics, 2023,
57: 102031. https://doi.org/10.1016/j.aei.2023.102031.
[4]Kumar A , Gandhi C P , Vashishtha G ,et al.VMD
based trigonometric entropy measure: a simple and effective
tool for dynamic degradation monitoring of rolling element
bearing[J].Measurement Science and Technology, 2022,
33(1):014005-.DOI:10.1088/1361-6501/ac2fe8.
DOI: http://dx.doi.org/10.12361/2661-3506-06-10-138854
Refbacks
- 当前没有refback。