自由能微扰理论及其应用研究进展
摘要
统哈密顿量,从而计算不同系统状态之间自由能差,从理论上提高自由能计算精确度。该方法适合从已知系统出发,
经过一系列结构状态之间转变的复杂体系,通过FEP方法精确计算分子在不同状态之间的自由能差异,其结论对揭
示分子结构转变行为及其相互作用至关重要。本研究聚焦于自由能微扰理论基础原理及其理论演化过程,重点分析
近年来FEP理论在药物设计和分子动力学模拟中的实际应用,以促进理论领域深入探索与计算技术进步。
关键词
全文:
PDF参考
[1]Kollman P. Free energy calculations: applications to
chemical and biochemical phenomena[J]. Chemical Reviews,
1993, 93(12):2395-2417.
[2]Jiang W, Phillips J C, Huang L, et al. Generalized
scalable multiple copy algorithms for molecular dynamics
simulations in NAMD[J]. Computer Physics Communications,
2014, 185(3):908-916.
[3]Woods C J, Essex J W, King M A. The development
of replica-exchange-based free-energy methods[J]. The
Journal of Physical Chemistry B, 2003, 107(49):13703-13710.
[4]Liu P, Kim B, Friesner R, et al. Replica exchange
with solute tempering: A method for sampling biological
systems in explicit water[J]. Proceedings of the National
Academy of Sciences of the United States of America, 2005,
102(39):13749-13754.
[5]Fratev F, Sirimulla S. An improved free energy
perturbation FEP+ sampling protocol for flexible ligandbinding domains[J]. Scientific Reports, 2019, 9(1):16829.
[6]Wang L, Friesner R A, Berne B J. Replica exchange
with solute scaling: a more efficient version of replica
exchange with solute tempering (REST2) [J]. The Journal of
Physical Chemistry B, 2011, 115(30):9431-9438.
[7]Jiang W, Chipot C, Roux B. Computing relative
binding affinity of ligands to receptor: An effective hybrid
single-dual topology free energy perturbation approach in
NAMD[J]. Journal of Chemical Information and Modeling,
2019, 59(9):3794-3802.
[8]Martins L C, Cino E A, Ferreira R S. PyAutoFEP:
An automated free energy perturbation workflow for
GROMACS integrating enhanced sampling methods[J].
Journal of Chemical Theory and Computation, 2021,
17(7):42662-4273.
[9]Bhat M B S, Emailprotected E, et al. FEP protocol
builder: Optimization of free energy perturbation protocols
using active learning[J]. Journal of Chemical Information and
Modeling, 2023, 63(17):5592-5603.
[10]Crivelli-Decker J E, Beckwith Z, Tom G, et al.
Machine learning guided AQFEP: A fast and efficient absolute
free energy perturbation solution for virtual screening[J].
Journal of Chemical Theory and Computation, 2024,
20(16):7188-7198.
[11]Wang E, Sun H, Wang J, et al. End-point binding
free energy calculation with MM/PBSA and MM/GBSA:
Strategies and applications in drug design[J]. Chemical
Reviews, 2019, 119(16):9478-9508.
[12]Berendsen H J C, van der Spoel D , van Drunen R.
GROMACS: A message-passing parallel molecular dynamics
implementation[J]. Computer Physics Communications, 1995,
91(1-3):43-56.
[13]Kunz A P E, Allison J R, Geerke D P, et al. New
functionalities in the GROMOS biomolecular simulation
software[J]. Journal of Computational Chemistry, 2011,
33(3):340-353.
[14]Wang L, Wu Y, Deng Y, et al. Accurate and reliable
prediction of relative ligand binding potency in prospective
drug discovery by way of a modern free-energy calculation
protocol and force field[J]. Journal of the American Chemical
Society, 2015, 137(7): 2695-2703.
[15]Phillips J C, Braun R, Wang W, et al. Scalablemolecular dynamics with NAMD[J]. Journal of Computational
Chemistry, 2005, 26(16): 1781-1802.
[16]Jiang W, Roux B. Free Energy Perturbation
Hamiltonian Replica-Exchange Molecular Dynamics (FEP/
H-REMD) for Absolute Ligand Binding Free Energy
Calculations[J]. Journal of Chemical Theory & Computation,
2010, 6(9):2559-2565.
[17]Meng Y, Sabri Dashti D, Roitberg A E. Computing
alchemical free energy differences with hamiltonian replica
exchange molecular dynamics (H-REMD) simulations[J].
Journal of Chemical Theory & Computation, 2011,
7(9):2721-2727.
[18]Kirkwood J G. Statistical mechanics of fluid
mixtures[J]. Journal of Chemical Physics, 1935, 3(5): 300-313.
[19]Zwanzig R W. High-temperature equation of state
by a perturbation method. I. Nonpolar gases[J]. Journal of
Chemical Physics, 1954, 22(8):1420-1426.
[20]Jorgensen W L, Thomas L L. Perspective on freeenergy perturbation calculations for chemical equilibria[J].
Journal of Chemical Theory and Computation, 2008,
4(6):869-876.
[21]Singh N, Li W. Absolute binding free energy
calculations for highly flexible protein MDM2 and its
inhibitors[J]. International Journal of Molecular Sciences,
2020, 21(13):4765.
[22]Wu X, Guo Q, Li Q, et al. Molecular mechanism
study of EGFR allosteric inhibitors using molecular dynamics
simulations and free energy calculations[J]. Journal of
biomolecular Structure & Dynamics, 2021(6):1-10.
[23]Vinícius B, Shamim A, Rocho F D R,et al.
Predicting the relative binding affinity for reversible covalent
inhibitors by free energy perturbation calculations[J]. Journal of
Chemical Information and Modeling, 2021, 61(9):4733-4744.
[24]Li Z, Wu C, Li Y, et al. Free energy perturbationbased large-scale virtual screening for effective drug
discovery against COVID-19[J]. International journal of high
performance computing applications, 2023, 37(1):45-57.
[25]Vanommeslaeghe K, Hatcher E, Acharya C, et al.
CHARMM general force field: A force field for drug-like
molecules compatible with the CHARMM all-atom additive
biological force fields[J]. Journal of Computational Chemistry,
2009, 31(4):671-690.
[26]Jiang W, Thirman J, Jo S, et al. Reduced free
energy perturbation/hamiltonian replica exchange molecular
dynamics method with unbiased alchemical thermodynamic
axis[J]. The Journal of Physical Chemistry B, 2018,
122(41):9435-9442.
[27]Woo H, Park S J, Choi Y K, et al. Developing a
fully-glycosylated full-length SARS-CoV-2 spike protein
model in a viral membrane[J]. The Journal of Physical
Chemistry B, 2020, 124(33):7128-7137.
[28]Zhang L, Zhou R. Structural basis of the potential
binding mechanism of remdesivir to SARS-CoV-2 RNAdependent RNA polymerase[J]. The Journal of Physical
Chemistry B, 2020, 124(32):6955-6962.
[29]陈前, 张锋, 梁启轩,等.基于微扰理论的
伽马-伽马密度测井快速正演方法[J].地球物理学报,
2022,65(4):8.
DOI: http://dx.doi.org/10.12361/2661-3506-06-10-138861
Refbacks
- 当前没有refback。