自由能微扰理论及其应用研究进展

邹 慧莹, 柳 高川, 琚 寅, 郭 阳涛, 于 涛*
江汉大学光电材料与技术学院

摘要


自由能微扰(Free Energy Perturbation,FEP)理论是微扰理论重要分支,通过引入微小扰动参数逐步改变系
统哈密顿量,从而计算不同系统状态之间自由能差,从理论上提高自由能计算精确度。该方法适合从已知系统出发,
经过一系列结构状态之间转变的复杂体系,通过FEP方法精确计算分子在不同状态之间的自由能差异,其结论对揭
示分子结构转变行为及其相互作用至关重要。本研究聚焦于自由能微扰理论基础原理及其理论演化过程,重点分析
近年来FEP理论在药物设计和分子动力学模拟中的实际应用,以促进理论领域深入探索与计算技术进步。

关键词


自由能微扰理论;分子动力学模拟;药物设计

全文:

PDF


参考


[1]Kollman P. Free energy calculations: applications to

chemical and biochemical phenomena[J]. Chemical Reviews,

1993, 93(12):2395-2417.

[2]Jiang W, Phillips J C, Huang L, et al. Generalized

scalable multiple copy algorithms for molecular dynamics

simulations in NAMD[J]. Computer Physics Communications,

2014, 185(3):908-916.

[3]Woods C J, Essex J W, King M A. The development

of replica-exchange-based free-energy methods[J]. The

Journal of Physical Chemistry B, 2003, 107(49):13703-13710.

[4]Liu P, Kim B, Friesner R, et al. Replica exchange

with solute tempering: A method for sampling biological

systems in explicit water[J]. Proceedings of the National

Academy of Sciences of the United States of America, 2005,

102(39):13749-13754.

[5]Fratev F, Sirimulla S. An improved free energy

perturbation FEP+ sampling protocol for flexible ligandbinding domains[J]. Scientific Reports, 2019, 9(1):16829.

[6]Wang L, Friesner R A, Berne B J. Replica exchange

with solute scaling: a more efficient version of replica

exchange with solute tempering (REST2) [J]. The Journal of

Physical Chemistry B, 2011, 115(30):9431-9438.

[7]Jiang W, Chipot C, Roux B. Computing relative

binding affinity of ligands to receptor: An effective hybrid

single-dual topology free energy perturbation approach in

NAMD[J]. Journal of Chemical Information and Modeling,

2019, 59(9):3794-3802.

[8]Martins L C, Cino E A, Ferreira R S. PyAutoFEP:

An automated free energy perturbation workflow for

GROMACS integrating enhanced sampling methods[J].

Journal of Chemical Theory and Computation, 2021,

17(7):42662-4273.

[9]Bhat M B S, Emailprotected E, et al. FEP protocol

builder: Optimization of free energy perturbation protocols

using active learning[J]. Journal of Chemical Information and

Modeling, 2023, 63(17):5592-5603.

[10]Crivelli-Decker J E, Beckwith Z, Tom G, et al.

Machine learning guided AQFEP: A fast and efficient absolute

free energy perturbation solution for virtual screening[J].

Journal of Chemical Theory and Computation, 2024,

20(16):7188-7198.

[11]Wang E, Sun H, Wang J, et al. End-point binding

free energy calculation with MM/PBSA and MM/GBSA:

Strategies and applications in drug design[J]. Chemical

Reviews, 2019, 119(16):9478-9508.

[12]Berendsen H J C, van der Spoel D , van Drunen R.

GROMACS: A message-passing parallel molecular dynamics

implementation[J]. Computer Physics Communications, 1995,

91(1-3):43-56.

[13]Kunz A P E, Allison J R, Geerke D P, et al. New

functionalities in the GROMOS biomolecular simulation

software[J]. Journal of Computational Chemistry, 2011,

33(3):340-353.

[14]Wang L, Wu Y, Deng Y, et al. Accurate and reliable

prediction of relative ligand binding potency in prospective

drug discovery by way of a modern free-energy calculation

protocol and force field[J]. Journal of the American Chemical

Society, 2015, 137(7): 2695-2703.

[15]Phillips J C, Braun R, Wang W, et al. Scalablemolecular dynamics with NAMD[J]. Journal of Computational

Chemistry, 2005, 26(16): 1781-1802.

[16]Jiang W, Roux B. Free Energy Perturbation

Hamiltonian Replica-Exchange Molecular Dynamics (FEP/

H-REMD) for Absolute Ligand Binding Free Energy

Calculations[J]. Journal of Chemical Theory & Computation,

2010, 6(9):2559-2565.

[17]Meng Y, Sabri Dashti D, Roitberg A E. Computing

alchemical free energy differences with hamiltonian replica

exchange molecular dynamics (H-REMD) simulations[J].

Journal of Chemical Theory & Computation, 2011,

7(9):2721-2727.

[18]Kirkwood J G. Statistical mechanics of fluid

mixtures[J]. Journal of Chemical Physics, 1935, 3(5): 300-313.

[19]Zwanzig R W. High-temperature equation of state

by a perturbation method. I. Nonpolar gases[J]. Journal of

Chemical Physics, 1954, 22(8):1420-1426.

[20]Jorgensen W L, Thomas L L. Perspective on freeenergy perturbation calculations for chemical equilibria[J].

Journal of Chemical Theory and Computation, 2008,

4(6):869-876.

[21]Singh N, Li W. Absolute binding free energy

calculations for highly flexible protein MDM2 and its

inhibitors[J]. International Journal of Molecular Sciences,

2020, 21(13):4765.

[22]Wu X, Guo Q, Li Q, et al. Molecular mechanism

study of EGFR allosteric inhibitors using molecular dynamics

simulations and free energy calculations[J]. Journal of

biomolecular Structure & Dynamics, 2021(6):1-10.

[23]Vinícius B, Shamim A, Rocho F D R,et al.

Predicting the relative binding affinity for reversible covalent

inhibitors by free energy perturbation calculations[J]. Journal of

Chemical Information and Modeling, 2021, 61(9):4733-4744.

[24]Li Z, Wu C, Li Y, et al. Free energy perturbationbased large-scale virtual screening for effective drug

discovery against COVID-19[J]. International journal of high

performance computing applications, 2023, 37(1):45-57.

[25]Vanommeslaeghe K, Hatcher E, Acharya C, et al.

CHARMM general force field: A force field for drug-like

molecules compatible with the CHARMM all-atom additive

biological force fields[J]. Journal of Computational Chemistry,

2009, 31(4):671-690.

[26]Jiang W, Thirman J, Jo S, et al. Reduced free

energy perturbation/hamiltonian replica exchange molecular

dynamics method with unbiased alchemical thermodynamic

axis[J]. The Journal of Physical Chemistry B, 2018,

122(41):9435-9442.

[27]Woo H, Park S J, Choi Y K, et al. Developing a

fully-glycosylated full-length SARS-CoV-2 spike protein

model in a viral membrane[J]. The Journal of Physical

Chemistry B, 2020, 124(33):7128-7137.

[28]Zhang L, Zhou R. Structural basis of the potential

binding mechanism of remdesivir to SARS-CoV-2 RNAdependent RNA polymerase[J]. The Journal of Physical

Chemistry B, 2020, 124(32):6955-6962.

[29]陈前, 张锋, 梁启轩,等.基于微扰理论的

伽马-伽马密度测井快速正演方法[J].地球物理学报,

2022,65(4):8.




DOI: http://dx.doi.org/10.12361/2661-3506-06-10-138861

Refbacks

  • 当前没有refback。