基于SARIMA-PDE耦合模型的分拣中心货量预测与动态排班优化

杜 松原
西北民族大学

摘要


本文提出了一种基于SARIMA-PDE耦合模型的分拣中心货量预测与动态排班优化方法。通过结合SARIMA模型捕捉货量的时间序列特征,并利用偏微分方程(PDE)描述货量在分拣中心网络中的空间流动规律,实现了时空耦合的高精度预测。模型有效提升了分拣中心货量预测的准确性,尤其在应对促销活动和季节性波动时表现优异。同时,基于预测结果的动态排班优化模型能够在保证货量处理效率的同时,显著减少人力成本和提高工作效率。实际案例验证显示,该模型在面对突发需求波动时具有较强的鲁棒性,为智能化物流管理提供了有效的理论支持。

关键词


SARIMA-PDE耦合模型;货量预测;动态排班优化

全文:

PDF


参考


[1]Box G E P, Jenkins G M. Time Series Analysis: Forecasting and Control [M]. Holden-Day, 1970.

[2]Lighthill M J, Whitham G B. On kinematic waves: II. A theory of traffic flow on long crowded roads [J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1955, 229 (1178): 317-345.

[3]Smith J, et al. Spatiotemporal freight volume forecasting using partial differential equations [J]. Transportation Research Part B: Methodological, 2022, 158: 267-289.

[4]Li Y, et al. Dynamic cargo allocation in logistics networks: A PDE-based approach [J]. European Journal of Operational Research, 2023, 306 (3): 1032-1045.

[5]马飞虎.基于MIKE21和SARIMA模型对巢湖不同水动力条件下水质时空分布研究[D].安徽建筑大学,2024.

[6]张恒飞,成雪夫,田昊,等.基于SARIMA模型的农村供水工程用水量实时预测[J].水利水电快报,2022,43(4):42-45.

[7]王国庆,刘慧敏,熊菲.基于偏微分方程的数学模型构建与高校数学教学创新[N].广东科技报,2024-11-15(013).DOI:10.28252/n.cnki.ngdkj.2024.000323.

[8]刘霞.AI求解偏微分方程较以往快数千倍[N].科技日报,2024-12-11(004).DOI:10.28502/n.cnki.nkjrb.2024.008087.




DOI: http://dx.doi.org/10.12361/2661-3506-07-06-144621

Refbacks

  • 当前没有refback。