桥梁结构损伤识别技术研究进展

郑 子恒
苏州科技大学 土木工程学院

摘要


随着我国交通基础设施建设的迅猛发展,桥梁数量和使用年限显著增长,随之而来的结构老化与损伤问题逐渐加剧。传统损伤检测手段效率低、成本高、主观性强,已难以满足现代桥梁安全运维的需求。近年来,人工智能特别是深度学习技术在结构健康监测领域显示出极大潜力。本文从桥梁结构损伤识别的研究背景出发,系统梳理了传统方法、机器学习方法和深度学习方法的发展过程,旨在为智能桥梁健康监测技术的进一步发展提供参考。

关键词


损伤识别;深度学习;结构健康监测

全文:

PDF


参考


[1]Melhem H , Kim H . Damage Detection in Concrete by Fourier and Wavelet Analyses[J]. Journal of Engineering Mechanics, 2003, 129(5): 571-577.

[2]Doebling, S W, Farrar, C R, Prime, M B, & Shevitz, D W. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review, 1996-05-01.

[3]王研.基于固有频率变化的桥梁损伤识别[D].华东交通大学,2012.

[4]赵海云.基于多等级模态参数识别的大跨桥梁损伤诊断方法研究[D].哈尔滨工业大学,2015.

[5]CURADELLI R O, RIERA J D, AMBROSINI D, et al. Damage detection by means of structural damping identification[J]. Engineering Structures, 2008, 30(12): 3497-3504.

[6]LJUNG L. System Identification: Theory for the User[M]. 2nd edition. Upper Saddle River, NJ:Pearson, 1998.

[7]杨剑锋,乔佩蕊,李永梅,等.机器学习分类问题及算法研究综述[J].统计与决策,2019,35(6):36-40.

[8]TANG H S, XUE S T, CHEN R, et al. Online weighted LS-SVM for hysteretic structural system identification[J]. Engineering Structures, 2006, 28(12): 1728-1735.

[9]程寒.基于数据挖掘的斜拉桥损伤诊断模型算法研究[J/OL].石家庄铁道大学,2023.

[10]GONZÁLEZ-PÉREZ C, VALDÉS-GONZÁLEZ J. Identification of Structural Damage in a Vehicular Bridge using Artificial Neural Networks[J]. Structural Health Monitoring, 2011, 10(1): 33-48

[11]王国庆.Copula函数及ANN方法在矮塔斜拉桥地震易损性分析中的应用[J/OL].合肥工业大学,2022.

[12]陈佳梦.斜拉桥损伤诊断模型验证与性能提升方法研究[D].石家庄铁道大学,2023.

[13]刘建林,潘凯,杨刚,等.基于KNN算法的大跨度连续刚构桥施工监控研究[J/OL].中外公路,1-11[2025-04-13]. http://kns.cnki.net/kcms/detail/43.1363.U.20240422.1831.010.html.

[14]张西宁,张雯雯,周融通,等.基于多维缩放和随机森林的轴承故障诊断方法[J].西安交通大学学报,2019,53(08):1-7.

[15]王璐瑶,常兴科,张海君.基于Random Forest和层次分析法的混凝土连续梁桥耐久性评估[J].沈阳大学学报(自然科学版),2024,36(03):255-261.

[16]SCHMIDHUBER J. Deep learning in neural networks: An overview[J]. Neural Networks, 2015, 61: 85-117.

[17]LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.

[18]翁顺,雷奥琦,陈志丹,等.基于模型嵌入循环神经网络的损伤识别方法[J].湖南大学学报(自然科学版),2024,51(7):21-29.

[19]翁楦乔,文成林.基于深度特征聚类和RNN的电网故障诊断[J].控制工程,2022,29(01):175-181.

[20]Huang W ,Song G ,Hong H, et al.Deep Architecture for Traffic Flow Prediction: Deep Belief Networks With Multitask Learning.[J]. IEEE Trans. Intelligent Transportation Systems, 2014, 15(5): 2191-2201.

[21]常亮亮,姜文恺,杨汉青,等.基于结构动力特性的结构损伤深度置信网络分层识别研究[J].地震工程与工程振动,2024,44(02):61-71.

[22]XIE J, DU G, SHEN C, et al. An End-to-End Model Based on Improved Adaptive Deep Belief Network and Its Application to Bearing Fault Diagnosis[J]. IEEE Access, 2018, 6: 63584-63596.

[23]ZHAO R, YAN R, CHEN Z, et al. Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing, 2019, 115: 213-237.

[24]LIN Y, NIE Z, MA H. Structural Damage Detection with Automatic Feature‐Extraction through Deep Learning[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(12): 1025-1046.

[25]GUO X, CHEN L, SHEN C. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis[J]. Measurement, 2016, 93: 490-502.




DOI: http://dx.doi.org/10.12361/2661-3506-07-11-149889

Refbacks

  • 当前没有refback。