典型包络解调方法在空间执行机构轴承中的诊断研究
摘要
由于其性能退化机理尚不完全清晰,一些故障诊断方法在实际应用中常出现虚警、漏警及误诊等情况。针对这一问
题,本文提出了一套轴承故障诊断算法有效性评估流程,通过多种评价指标从多个角度揭示算法诊断能力。然后以
此为基础,对比了不同诊断算法对地面承载轴承和空间轴承诊断的有效性与准确性,为空间机构轴承诊断算法的改
进指明方向。最后,构建基于包络解调的轴承故障诊断方法,提高了故障诊断的有效性。
关键词
全文:
PDF参考
[1]Islam M. S., Rahimi A. Use of a data-driven approach
for time series prediction in fault prognosis of satellite reaction
wheel [C]. Proceedings of the IEEE International Conference
on Systems, Man, and Cybernetics (SMC), 2020.[2]Chen G. Y., Lu G. L., Liu J., et al. An integrated
framework for statistical change detection in running status of
industrial machinery under transient conditions [J]. ISA Trans,
2019, 94: 294-306.
[3]Xu L., Chatterton S., Pennacchi P. Rolling element
bearing diagnosis based on singular value decomposition and
composite squared envelope spectrum [J]. Mechanical Systems
and Signal Processing, 2021, 148: 25.
[4]Zhang T. C., Chen J. L., Li F. D., et al. Intelligent
fault diagnosis of machines with small & imbalanced data:
A state-of-the-art review and possible extensions [J]. ISA
Trans, 2022, 119: 152-71.
[5]Dzakow I. Je.,Valentine G. S. Advanced techniques
for the verification and validation of prognostics & health
management capabilities [A]. Proceedings of the 60th
Meeting of the Society for Machinery Failure Prevention
Technology,Vinginia a Beach Vinginia,2006.
[6]Hess A., Calvello G., Dabney T. PHM a key enabler
for the JSF autonomic logistics support concept [C]. IEEE
Aerospace Conference, 2004.
[7]Massam S., McMullan. Verification of PHM
capabilities: a joint customer/industrial perspective [C].
Proceedings of the 2002 IEEE Aerospace Conference, 2002.
[8]Saxena A., Celaya J., Saha B., et al. Metrics for offline
evaluation of prognostic performance [C]. International
Journal of Prognostic and Health Management, 2010.
[9]隆金波,曲昌琦,蒋觉义等.典型机电系统PHM
评价指标分析[J].计算机测量与控制,2021,29(06):
255-259.
[10]Chen X. Y., Ge D., Liu X., et al. Roller bearing
fault diagnosis based on empirical mode decomposition
and targeting feature selection [C]. Proceedings of the 3rd
International Conference on Information Processing and
Control Engineering, Moscow, 2019.
[11]Han M. H., Wu Y. M., Wang Y. M., et al.
Roller bearing fault diagnosis based on LMD and multiscale symbolic dynamic information entropy [J]. J Mech Sci
Technol, 2021, 35(5): 1993-2005.
[12]Case Western Reserve University nearing
center. Bearing data [EB/OL]. http://csegroups.case.edu/
bearingdatacenter/home.
[13]梅宏斌.滚动轴承振动监测与诊断[M].北京:机
械工业出版社,1995:38-39.
[14]Wu D. Y., Wang J. W., Wang H., et al. An
automatic bearing fault diagnosis method based on
characteristics frequency ratio [J]. Sensors, 2020, 20(5): 12.
Refbacks
- 当前没有refback。