石墨烯基柔性光电探测器的最新进展和应用前景
摘要
由于传统使用材料的刚性及其他限制促使研究者不断探索新的材料。石墨烯是第一种已知的二维层状材料,具有高
柔性、非凡的弹性模量和大应变(>10%)等特性,它的发现引发了研究热潮。本文综述了石墨烯基柔性光电探测器
的最新研究进展和应用前景,首先介绍了光电探测器的原理和性能指标,接着详细介绍了不同类型的石墨烯基柔性
探测器的研究进展、应用前景,最后进行了总结和展望。
关键词
全文:
PDF参考
[1]武雪源.纤维状有机光电探测器制备及光电特性
研究[D].成都:电子科技大学,2023.
[2]唐晓秋.二维硫族化合物光电探测器性能研究[D].
大连:大连交通大学,2023.
[3]刘睿丰,陈猛,王迎新,等.柔性光热电探测器
研究进展[J].中国激光,2023,50(23):2300001.
[4]Cheng Y, Guo X, Shi Y,et al. Recent advance of
high-quality perovskite nanostructure and its application in
flexible photodetectors. Nanotechnology, 2024, 35(24).
[5]Chen X, Shehzad K, Gao L, et al. Graphene hybrid
structures for integrated and flexible optoelectronics[J].
Advanced Materials, 2020, 32, e1902039.
[6]Chen G, Zhou Y, Zhang G, et al. Flexible,
self-powered Bi2O2Se/graphene photoeletrochemical
photodetector based on solid-state electrolytes[J]. Ceramics
International, 2021, 47, 25255–25263.
[7]王昆仑,赵继凤,王婉霞,等.柔性探测器的发
展趋势和应用前景[J].科技智囊,2020,7,59-62.
[8]张翼鹏,王雪,纪佩璇,等.不同响应机制下的
石墨烯基光电探测器研究进展[J].发光学报,2022,43
(4):552-575.
[9]黄嘉鑫.基于单层-多层石墨烯结的光电探测器
[D].武汉,华中科技大学,2022.
[10]刘粒祥.基于宏观组装石墨烯纳米膜的红外光电
探测器[D].杭州,浙江大学,2021.
[11]丁梦墦.氧化镓日盲探测器的结构设计与性能优
化研究[D].合肥,中国科学技术大学,2023.
[12]Wang M, Xiao Y, Li Y, et al. Recent progress
on graphene flexible photodetectors[J]. Materials (Basel),
2022,15(14):4820.
[13]Hu L, Deng J, Xie Y, et al. In situ growth of
graphene on polyimide for high-responsivity flexible PbS-graphene photodetectors[J]. Nanomaterials (Basel). 2023,
12,13(8):1339.
[14]Zhao J, Liu Q, Du Q, et al. Sensitive organic/
inorganic polarized photodetectors enhanced by charge
transfer with image sensing capacity[J]. Optics Express, 2024,
32(7): 12636-12644.
[15]Shin J, Yang H, Noh S, et al. Flexible 1.3 mum
photodetector fabricated with InN nanowires and graphene
on overhead projector transparency sheet[J]. Nanoscale, 2022;
14(30): 10793-10800.
[16]Cheng Y, Wang J, He Z, et al. Broadband
photodetection of centimeter-scale T-phase gallium telluride
grown by molecular beam epitaxy[J]. ACS Applied Materials
& Interfaces, 2024,16(14):17881-17890.
[17]Lin S, Habib MA, Burse S, et al. Hybrid UV
photodetector design incorporating AuPt alloy hybrid
nanoparticles, ZnO quantum dots, and graphene quantum
dots[J]. ACS Applied Materials & Interfaces, 2023;
15(1):2204-2215.
[18]Tong L, Su C, Li H, et al. Self-driven Gr/WSe2/Gr
photodetector with high performance based on asymmetric
schottky van der Waals contacts[J]. ACS Applied Materials &
Interfaces, 2023, doi: 10.1021/acsami.3c14331.
[19]Wang J, Han N, Lin Z, et al. A giant intrinsic
photovoltaic effect in atomically thin ReS2 [J]. Nanoscale.
2024, 16(6):3101-3106.
[20]Yan Y, Li J, Li S, et al. Two-dimensional wide-bandgap GeSe2 vertical ultraviolet photodetectors with
high responsivity and ultrafast response speed[J]. Nanoscale
Advance, 2022, 4(24):5297-5303.
[21]Tang L, Zou J. p-Type two-dimensional
semiconductors: from materials preparation to electronic
applications[J]. Nanomicro Letters, 2023, 15(1):230.
[22]He W, Kong L, Yu P, et al. Record-high work-function p-type CuBiP2 Se6 atomic layers for high-photoresponse van der Waals vertical heterostructure
phototransistor[J]. Advanced Materials, 2023, 35(14):
e2209995.
[23]He W, Wu D, Kong L, et al. Giant negative
photoresponse in van der Waals Graphene/AgBiP(2)Se(6)/
Graphene trilayer heterostructures [J]. Advanced Materials,
2024, 36(16): e2312541.
[24]Zou Y, Zhang Z, Yan J, et al. High-temperature
flexible WSe(2) photodetectors with ultrahigh photoresponsivity
[J]. Nature Communications, 2022, 13(1):4372.
[25]Liu F, Lin X, Yan Y, et al. Self-powered
programmable van der Waals photodetectors with nonvolatile
semifloating gate[J]. Nanomicro Letters, 2023, 23(24):11645-
11654.
DOI: http://dx.doi.org/10.12361/2661-3654-06-04-133737
Refbacks
- 当前没有refback。