石墨烯基柔性光电探测器的最新进展和应用前景

李 子琛
清华大学行健书院

摘要


光电探测器(PD)是现代电子信息产业的重要支柱,广泛应用于成像、通信、军事、健康监测等方面,但
由于传统使用材料的刚性及其他限制促使研究者不断探索新的材料。石墨烯是第一种已知的二维层状材料,具有高
柔性、非凡的弹性模量和大应变(>10%)等特性,它的发现引发了研究热潮。本文综述了石墨烯基柔性光电探测器
的最新研究进展和应用前景,首先介绍了光电探测器的原理和性能指标,接着详细介绍了不同类型的石墨烯基柔性
探测器的研究进展、应用前景,最后进行了总结和展望。

关键词


石墨烯;光电探测器;研究进展;应用前景

全文:

PDF


参考


[1]武雪源.纤维状有机光电探测器制备及光电特性

研究[D].成都:电子科技大学,2023.

[2]唐晓秋.二维硫族化合物光电探测器性能研究[D].

大连:大连交通大学,2023.

[3]刘睿丰,陈猛,王迎新,等.柔性光热电探测器

研究进展[J].中国激光,2023,50(23):2300001.

[4]Cheng Y, Guo X, Shi Y,et al. Recent advance of

high-quality perovskite nanostructure and its application in

flexible photodetectors. Nanotechnology, 2024, 35(24).

[5]Chen X, Shehzad K, Gao L, et al. Graphene hybrid

structures for integrated and flexible optoelectronics[J].

Advanced Materials, 2020, 32, e1902039.

[6]Chen G, Zhou Y, Zhang G, et al. Flexible,

self-powered Bi2O2Se/graphene photoeletrochemical

photodetector based on solid-state electrolytes[J]. Ceramics

International, 2021, 47, 25255–25263.

[7]王昆仑,赵继凤,王婉霞,等.柔性探测器的发

展趋势和应用前景[J].科技智囊,2020,7,59-62.

[8]张翼鹏,王雪,纪佩璇,等.不同响应机制下的

石墨烯基光电探测器研究进展[J].发光学报,2022,43

(4):552-575.

[9]黄嘉鑫.基于单层-多层石墨烯结的光电探测器

[D].武汉,华中科技大学,2022.

[10]刘粒祥.基于宏观组装石墨烯纳米膜的红外光电

探测器[D].杭州,浙江大学,2021.

[11]丁梦墦.氧化镓日盲探测器的结构设计与性能优

化研究[D].合肥,中国科学技术大学,2023.

[12]Wang M, Xiao Y, Li Y, et al. Recent progress

on graphene flexible photodetectors[J]. Materials (Basel),

2022,15(14):4820.

[13]Hu L, Deng J, Xie Y, et al. In situ growth of

graphene on polyimide for high-responsivity flexible PbS-graphene photodetectors[J]. Nanomaterials (Basel). 2023,

12,13(8):1339.

[14]Zhao J, Liu Q, Du Q, et al. Sensitive organic/

inorganic polarized photodetectors enhanced by charge

transfer with image sensing capacity[J]. Optics Express, 2024,

32(7): 12636-12644.

[15]Shin J, Yang H, Noh S, et al. Flexible 1.3 mum

photodetector fabricated with InN nanowires and graphene

on overhead projector transparency sheet[J]. Nanoscale, 2022;

14(30): 10793-10800.

[16]Cheng Y, Wang J, He Z, et al. Broadband

photodetection of centimeter-scale T-phase gallium telluride

grown by molecular beam epitaxy[J]. ACS Applied Materials

& Interfaces, 2024,16(14):17881-17890.

[17]Lin S, Habib MA, Burse S, et al. Hybrid UV

photodetector design incorporating AuPt alloy hybrid

nanoparticles, ZnO quantum dots, and graphene quantum

dots[J]. ACS Applied Materials & Interfaces, 2023;

15(1):2204-2215.

[18]Tong L, Su C, Li H, et al. Self-driven Gr/WSe2/Gr

photodetector with high performance based on asymmetric

schottky van der Waals contacts[J]. ACS Applied Materials &

Interfaces, 2023, doi: 10.1021/acsami.3c14331.

[19]Wang J, Han N, Lin Z, et al. A giant intrinsic

photovoltaic effect in atomically thin ReS2 [J]. Nanoscale.

2024, 16(6):3101-3106.

[20]Yan Y, Li J, Li S, et al. Two-dimensional wide-bandgap GeSe2 vertical ultraviolet photodetectors with

high responsivity and ultrafast response speed[J]. Nanoscale

Advance, 2022, 4(24):5297-5303.

[21]Tang L, Zou J. p-Type two-dimensional

semiconductors: from materials preparation to electronic

applications[J]. Nanomicro Letters, 2023, 15(1):230.

[22]He W, Kong L, Yu P, et al. Record-high work-function p-type CuBiP2 Se6 atomic layers for high-photoresponse van der Waals vertical heterostructure

phototransistor[J]. Advanced Materials, 2023, 35(14):

e2209995.

[23]He W, Wu D, Kong L, et al. Giant negative

photoresponse in van der Waals Graphene/AgBiP(2)Se(6)/

Graphene trilayer heterostructures [J]. Advanced Materials,

2024, 36(16): e2312541.

[24]Zou Y, Zhang Z, Yan J, et al. High-temperature

flexible WSe(2) photodetectors with ultrahigh photoresponsivity

[J]. Nature Communications, 2022, 13(1):4372.

[25]Liu F, Lin X, Yan Y, et al. Self-powered

programmable van der Waals photodetectors with nonvolatile

semifloating gate[J]. Nanomicro Letters, 2023, 23(24):11645-

11654.




DOI: http://dx.doi.org/10.12361/2661-3654-06-04-133737

Refbacks

  • 当前没有refback。