基于语义分割的光伏电池缺陷检测

张  浩, 王 建锋, 张 家瑞
西京学院机械工程学院

摘要


随着全球对太阳能的日益依赖,开发可靠的光伏电池缺陷检测系统显得尤为重要。目前的方法大多依赖手
工检查,不仅耗时而且容易出错。本研究提出了一种基于语义分割的光伏电池缺陷检测,该方法在光伏电池电致发
光(EL)图像中采用了一种新型的语义分割模型。尽管面临着缺陷类型差异大和部分缺陷特征不明显等挑战,本
文提出的模型能够有效识别裂纹和手指中断缺陷类型。本文介绍的神经网络模型基于ResNet-50主干网络,添加了
Squeeze-and-Excitation(SE)自适应通道注意力模块,并与DeepLabv3中的Atrous Spatial Pyramid Pooling(ASPP)模
块相结合。通过对各通道特征进行自适应重标定,捕获不同尺度上的上下文信息,不仅提高了模型的表达能力,也
增强了其对复杂场景的理解能力。

关键词


语义分割;缺陷检测;深度学习;光伏电池

全文:

PDF


参考


[1]Kabir E, Kumar P, Kumar S, et al. Solar energy:

Potential and future prospects[J]. Renewable and Sustainable

Energy Reviews, 2018, 82: 894-900.

[2]Ge C, Liu Z, Fang L, et al. A hybrid fuzzy

convolutional neural network based mechanism for

photovoltaic cell defect detection with electroluminescence

images[J]. IEEE Transactions on Parallel and Distributed

Systems, 2020, 32(7): 1653-1664.

[3]Simonyan K, Zisserman A. Very deep convolutional

networks for large-scale image recognition[J]. arXiv preprint

arXiv:1409.1556, 2014.

[4]Howard A G, Zhu M, Chen B, et al. Mobilenets:

Efficient convolutional neural networks for mobile vision

applications[J]. arXiv preprint arXiv:1704.04861, 2017.

[5]He K, Zhang X, Ren S, et al. Deep residual

learning for image recognition[C]//Proceedings of the IEEE

conference on computer vision and pattern recognition. 2016:

770-778.

[6]Chen L C, Papandreou G, Schroff F, et al. Rethinking

atrous convolution for semantic image segmentation[J]. arXiv

preprint arXiv:1706.05587, 2017.

[7]Wang C, Chen H, Zhao S. RERN: Rich edge

features refinement detection network for polycrystalline solar

cell defect segmentation[J]. IEEE Transactions on Industrial

Informatics, 2023.




DOI: http://dx.doi.org/10.12361/2661-3654-06-04-133745

Refbacks

  • 当前没有refback。