适应波动性电解水催化材料的研究进展
摘要
关键词
全文:
PDF参考
[1]Ibáñez-Rioja A, Järvinen L, Puranen P, et al. Off-grid solar PV-wind power-battery-water electrolyzer plant: Simultaneous optimization of component capacities and system control[J]. Applied Energy, 2023, 345: 121277.
[2]Wang Y, Sharma A, Duong T, et al. Direct solar hydrogen generation at 20% efficiency using low-cost materials[J]. Advanced Energy Materials, 2021, 11(34): 2101053.
[3]Qin C, Chen S, Gomaa H, et al. Regulating HER and OER performances of 2D materials by the external physical fields[J]. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059.
[4]Lee M, Haas S, Smirnov V, et al. Scalable photovoltaic-electrochemical cells for hydrogen production from water-recent advances[J]. ChemElectroChem, 2022, 9(24): e202200838.
[5]丁显,冯涛,何广利,et al.风电光伏波动性电源对电解水制氢电解槽影响的研究进展[J].储能科学与技术,2022,11(10):3275-3284.
[6]Yan L, Wang H, Shen J, et al. Formation of mesoporous Co/CoS/Metal-N-C@S, N-codoped hairy carbon polyhedrons as an efficient trifunctional electrocatalyst for Zn-air batteries and water splitting[J]. Chemical Engineering Journal, 2021, 403: 126385.
[7]Zhou L, Li W, Qiao Y, et al. Development path of digital cultural industry by integrating proportional integral and differential algorithm from the perspective of cultural innovation[J]. Intelligent Decision Technologies, 2024, 18(4): 3075-3089.
[8]Abdel Haleem A, Nagasawa K, Kuroda Y, et al. A new accelerated durability test protocol for water oxidation electrocatalysts of renewable energy powered alkaline water electrolyzers[J]. Electrochemistry, 2021, 89(2): 186-191.
[9]钱宇,陈耀熙,史晓斐.太阳能波动特性大数据分析与风光互补耦合制氢系统集成[J].化工学报,2022,73(05):2101-2110+2290.
[10]Lv X, Li X, Yang C, et al. Large-size, porous, ultrathin NiCoP nanosheets for efficient electro/photocatalytic water splitting[J]. Advanced Functional Materials, 2020, 30(16): 1910830.
[11]Kim I-S, Cho H-S, Kim M, et al. Sacrificial species approach to designing robust transition metal phosphide cathodes for alkaline water electrolysis in discontinuous operation[J]. Journal of Materials Chemistry A, 2021, 9(31): 16713-16724.
[12]Guan L, Zhang G, An S, et al. 3D core-shell structured NiMoO4@CoFe-LDH nanorods: performance of efficient oxygen evolution reaction and overall water splitting[J]. Journal of Inorganic Materials, 2024, 39(11): 1254.
[13]Kuroda Y, Nishimoto T, Mitsushima S. Self-repairing hybrid nanosheet anode catalysts for alkaline water electrolysis connected with fluctuating renewable energy[J]. Electrochimica Acta, 2019, 323: 134812.
[14]Yang W, Wang S, Zhao K, et al. Phosphorus doped nickel selenide for full device water splitting[J]. Journal of Colloid and Interface Science, 2021, 602: 115-122.
[15]Huang Y, Li M, Pan F, et al. Plasma-induced Mo-doped Co3O4 with enriched oxygen vacancies for electrocatalytic oxygen evolution in water splitting[J]. Carbon Energy, 2022, 5(3): e279.
[16]Yin H, Xiao H, Qin R, et al. Lattice strain mediated reversible reconstruction in CoMoO4·0.69H2O for intermittent oxygen evolution[J]. ACS Applied Materials & Interfaces, 2023, 15(16): 20100-20109.
[17]Ding D, Liu Y, Xia F. Interface engineering via molecules/ions/groups for electrocatalytic water splitting[J]. Nano Research, 2024, 17(9): 7864-7879.
[18]Wang P, Wang B. Designing self-supported electrocatalysts for electrochemical water splitting: surface/interface engineering toward enhanced electrocatalytic performance[J]. ACS Applied Materials & Interfaces, 2021, 13(50): 59593-59617.
[19]Yin H, Qian L, Xiao H, et al. Shock-endurable and reversible evolution between CoOOH and intermediate governed by interfacial strain for fluctuating oxygen evolution[J]. Chemical Engineering Journal, 2024, 490: 151699.
[20]Khan J, Liu H, Zhang T, et al. A monolithic Co-FeCo8S8 electrode for a stable anion exchange membrane water electrolyzer driven by a fluctuating power supply[J]. Energy & Environmental Science, 2024, 17(24): 9435-9442.
DOI: http://dx.doi.org/10.12361/2661-3654-07-03-144190
Refbacks
- 当前没有refback。