适应波动性电解水催化材料的研究进展

陈 永林, 唐 春
西南石油大学新能源与材料学院

摘要


在“碳达峰 碳中和”目标背景下,可再生能源电解水制氢技术成为实现能源绿色可持续发展的关键。然而,由于可再生能源(风能、太阳能等)发电具有波动性和间歇性,会导致电解槽中催化剂在制氢过程中发生溶解和聚集,影响电解槽的效率和寿命。因此,提高电解水制氢催化剂在波动性电源条件下的稳定性至关重要。本综述探讨了波动性电源对电解水制氢催化材料的影响机制,介绍了在波动性电源下催化剂的评价方法,梳理了近几年抗波动性催化材料的构建策略,如结构设计、界面调控和掺杂等。合理的结构设计能调节催化剂的电子结构和表面性质,增强其在波动性电力下的稳定性;界面调控可以优化催化剂的电子环境,提高其在不稳定电源条件下的活性;掺杂技术则通过引入元素改变催化剂的电子密度,提升其抗波动性能。通过优化催化剂设计,可以增强电解槽对波动性电源的抵抗能力,提升可再生能源的利用效率。这不仅有助于降低电解水制氢的成本,也推动了该技术在大规模应用中的发展。随着催化材料的不断优化,抗波动性电解水制氢技术将成为支持低碳经济和绿色能源转型的重要方式。

关键词


可再生能源;制氢电解槽;波动性测试方法;材料改性

全文:

PDF


参考


[1]Ibáñez-Rioja A, Järvinen L, Puranen P, et al. Off-grid solar PV-wind power-battery-water electrolyzer plant: Simultaneous optimization of component capacities and system control[J]. Applied Energy, 2023, 345: 121277.

[2]Wang Y, Sharma A, Duong T, et al. Direct solar hydrogen generation at 20% efficiency using low-cost materials[J]. Advanced Energy Materials, 2021, 11(34): 2101053.

[3]Qin C, Chen S, Gomaa H, et al. Regulating HER and OER performances of 2D materials by the external physical fields[J]. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059.

[4]Lee M, Haas S, Smirnov V, et al. Scalable photovoltaic-electrochemical cells for hydrogen production from water-recent advances[J]. ChemElectroChem, 2022, 9(24): e202200838.

[5]丁显,冯涛,何广利,et al.风电光伏波动性电源对电解水制氢电解槽影响的研究进展[J].储能科学与技术,2022,11(10):3275-3284.

[6]Yan L, Wang H, Shen J, et al. Formation of mesoporous Co/CoS/Metal-N-C@S, N-codoped hairy carbon polyhedrons as an efficient trifunctional electrocatalyst for Zn-air batteries and water splitting[J]. Chemical Engineering Journal, 2021, 403: 126385.

[7]Zhou L, Li W, Qiao Y, et al. Development path of digital cultural industry by integrating proportional integral and differential algorithm from the perspective of cultural innovation[J]. Intelligent Decision Technologies, 2024, 18(4): 3075-3089.

[8]Abdel Haleem A, Nagasawa K, Kuroda Y, et al. A new accelerated durability test protocol for water oxidation electrocatalysts of renewable energy powered alkaline water electrolyzers[J]. Electrochemistry, 2021, 89(2): 186-191.

[9]钱宇,陈耀熙,史晓斐.太阳能波动特性大数据分析与风光互补耦合制氢系统集成[J].化工学报,2022,73(05):2101-2110+2290.

[10]Lv X, Li X, Yang C, et al. Large-size, porous, ultrathin NiCoP nanosheets for efficient electro/photocatalytic water splitting[J]. Advanced Functional Materials, 2020, 30(16): 1910830.

[11]Kim I-S, Cho H-S, Kim M, et al. Sacrificial species approach to designing robust transition metal phosphide cathodes for alkaline water electrolysis in discontinuous operation[J]. Journal of Materials Chemistry A, 2021, 9(31): 16713-16724.

[12]Guan L, Zhang G, An S, et al. 3D core-shell structured NiMoO4@CoFe-LDH nanorods: performance of efficient oxygen evolution reaction and overall water splitting[J]. Journal of Inorganic Materials, 2024, 39(11): 1254.

[13]Kuroda Y, Nishimoto T, Mitsushima S. Self-repairing hybrid nanosheet anode catalysts for alkaline water electrolysis connected with fluctuating renewable energy[J]. Electrochimica Acta, 2019, 323: 134812.

[14]Yang W, Wang S, Zhao K, et al. Phosphorus doped nickel selenide for full device water splitting[J]. Journal of Colloid and Interface Science, 2021, 602: 115-122.

[15]Huang Y, Li M, Pan F, et al. Plasma-induced Mo-doped Co3O4 with enriched oxygen vacancies for electrocatalytic oxygen evolution in water splitting[J]. Carbon Energy, 2022, 5(3): e279.

[16]Yin H, Xiao H, Qin R, et al. Lattice strain mediated reversible reconstruction in CoMoO4·0.69H2O for intermittent oxygen evolution[J]. ACS Applied Materials & Interfaces, 2023, 15(16): 20100-20109.

[17]Ding D, Liu Y, Xia F. Interface engineering via molecules/ions/groups for electrocatalytic water splitting[J]. Nano Research, 2024, 17(9): 7864-7879.

[18]Wang P, Wang B. Designing self-supported electrocatalysts for electrochemical water splitting: surface/interface engineering toward enhanced electrocatalytic performance[J]. ACS Applied Materials & Interfaces, 2021, 13(50): 59593-59617.

[19]Yin H, Qian L, Xiao H, et al. Shock-endurable and reversible evolution between CoOOH and intermediate governed by interfacial strain for fluctuating oxygen evolution[J]. Chemical Engineering Journal, 2024, 490: 151699.

[20]Khan J, Liu H, Zhang T, et al. A monolithic Co-FeCo8S8 electrode for a stable anion exchange membrane water electrolyzer driven by a fluctuating power supply[J]. Energy & Environmental Science, 2024, 17(24): 9435-9442.




DOI: http://dx.doi.org/10.12361/2661-3654-07-03-144190

Refbacks

  • 当前没有refback。