基于改进YOLOv8的火灾识别算法
摘要
灾实时检测。针对火焰目标的多尺度特性及烟雾干扰问题本研究提出的改进YOLOv8算法通过融合MSDA注意
力机制。实验结果表明改进后的YOLOv8-MSDA模型性能优势明显与原始YOLOv8模型相比改进模型在精确
率指标上较基线模型增加3.3%识别召回率提升1.8%均值平均精度提高1.7%F1Score增长2.5%表明了改进模
型在多尺度目标检测上表现卓越能够满足火灾识别的准确性要求。
关键词
全文:
PDF参考
[1]Sohan M , Sai Ram T , Rami Reddy C V .A Review
on YOLOv8 and Its Advancements[C]//International
Conference on Data Intelligence and Cognitive Informatics.
Springer, Singapore, 2024.
[2]LIU S, QI L, QIN. Path aggregation network
for instance segmentation [C]. ce on computer vision.
2019:6023-6032.Proceedings of the IEEE conference on
computer vision and pattern recognition. 2018:8759-8768
[3]Kim J H,Kim N,Park Y W,et al.Object detection
and classification based on YOLO-V5 with improved
maritime dataset[J].Journal of Marine Science and
Engineering,2022,10(3):377.
[4]Jiao J,Tang Y M,Lin K Y,et al.Dilateformer:Multiscale dilated transformer for visual recognition[J].IEEE
Transactions on Multimedia,2023.
[5]邢钰,郭喆伊,苏小囡.基于机器学习算法的我
国原油期货价格的极端风险预测[J].长春工程学院学报
(社会科学版),2024,25(04):40-44.
[6]Redmon J , Farhadi A .YOLOv3: An Incremental
Improvement[J].arXiv e-prints, 2018.
[7]Goel L , Patel P .Improving YOLOv6 using advanced
PSO optimizer for weight selection in lung cancer detection
and classification[J].Multimedia Tools & Applications, 2024,
83(32).
DOI: http://dx.doi.org/10.12361/2661-3654-07-04-146137
Refbacks
- 当前没有refback。