基于改进YOLOv5s的葡萄叶片病虫害检测
摘要
改进的目标检测算法。该方法以YOLOv5s为基础模型,将C3替换为可变形卷积(DCN,Deformable Convolution
Network),用以提高鲁棒性,融入注意力机制CoordConv用以提高模型的泛化性。实验结果表明,该方法较未改进
的YOLOv5s,YOLOv5n,YOLOv5l网络相比,检测准确率分别提高了,同时泛化能力更强。该方法也为葡萄叶片
病害预防提供了新思路。
关键词
全文:
PDF参考
[1]朱加俊.基于深度学习的葡萄叶片黑腐病检测与
病斑分割方法研究[D].河北农业大学,2022.
[2]翟肇裕,曹益飞,徐焕良,等.农作物病虫害检测
关键技术研究综述[J].农业机械学报,2021,52(07):1-18.
[3]兰玉彬,孙斌书,张乐春,等.基于改进YOLOv5s
的自然场景下生姜叶片病虫害检测[J].农业工程学报,
2024,40(01):210-216.
[4]Krishnaswamy Rangarajan,Aravind & Raja,P. &
Ramesh, Aniirudh.(2018).Tomato crop disease classification
using pre-trained deep learning algorithm.Procedia Computer
Science.133.1040-1047.10.1016/j.procs.2018.07.070.
[5]郑建华,朱立学,朱蓉.基于多特征融合与支持向量机的葡萄病害检测[J].现代农业装备,2018(06):
54-60.
[6]Shengyi Zhao,Jizhan Liu,Shuo Wu,Multiple disease
detection method for greenhouse-cultivated strawberry based
on multiscale feature fusion Faster R_CNN,Computers and
Electronics in Agriculture,Volume 199,2022,107176,ISSN
0168-1699.
[7]曾伟辉,张文凤,陈鹏等.基于SCResNeSt的低
分辨率水稻害虫图像检测方法[J].农业机械学报,2022,
53(09):277-285.
[8]李子茂,刘恋冬,夏梦等.基于深度学习的月季
多叶片病虫害检测研究[J].中国农机化学报,2021,42
(08):169-176.
[9]Shufei Li, Kaiyu Li, Yan Qiao, Lingxian Zhang,A
multi-scale cucumber disease detection method in natural
scenes based on YOLOv5,Computers and Electronics in
Agriculture,Volume 202,2022,107363,ISSN 0168-1699.
[10]Xinxing Zhang, Yi Xun, Yaohui Chen,Automated
identification of citrus diseases in orchards using deep
learning,Biosystems Engineering,Volume 223, Part
A,2022,Pages 249-258,ISSN 1537-5110.
[11]郑 宇 达, 陈 仁 凡, 杨 长 才, 等.基 于 改 进
YOLOv5s模型的柑橘病虫害检测方法[J].华中农业大学
学报,2024,43(02):134-143.
[12]LIU R,LEHMAN J,MOLINO P,et al. An intriguing
failing of convolutional neural networks and the CoordConv
solution[C]∥Proceedings of the 32nd International
Conference on Neural Information Processing Systems. New
York: ACM,2018:9628-9639
[13]J. Dai et al.,"Deformable Convolutional
Networks,"2017 IEEE International Conference on Computer
Vision (ICCV),Venice,Italy,2017,pp.764-773.
[ 1 4 ] Z h a o y a n g N i u , G u o q i a n g Z h o n g , H u i
Yu,A review on the attention mechanism of deep
learning,Neurocomputing,Volume 452,2021,Pages 48-
62,ISSN 0925-2312.
[15]刘向举,刘洋,蒋社想.基于SimAM注意力机
制的DCN-YOLOv5水下目标检测[J/OL].重庆工商大学
学报(自然科学版):1-9[2024-06-07].
[16]ZHU X Z, HU H, LIN S, et al.Deformable
ConvNets v2:more deformable,better results[C]//
Proceedings of the 2019 IEEE Conference on Computer
Vision and Pattern Recognition, Long Beach,Jun 16-
20,2019.Piscataway:IEEE.2019:9308-9316.
DOI: http://dx.doi.org/10.12361/2661-3654-07-06-148152
Refbacks
- 当前没有refback。