基于改进YOLOv5s的葡萄叶片病虫害检测

杨 帆
武汉轻工大学电气与电子工程学院

摘要


为了满足葡萄种植期间对于叶片病虫害检测的实时性以及精确性的需求,提出了一种基于YOLOv5s模型
改进的目标检测算法。该方法以YOLOv5s为基础模型,将C3替换为可变形卷积(DCN,Deformable Convolution
Network),用以提高鲁棒性,融入注意力机制CoordConv用以提高模型的泛化性。实验结果表明,该方法较未改进
的YOLOv5s,YOLOv5n,YOLOv5l网络相比,检测准确率分别提高了,同时泛化能力更强。该方法也为葡萄叶片
病害预防提供了新思路。

关键词


病虫害检测;YOLOv5s;CoordConv注意力机制;DCN网络

全文:

PDF


参考


[1]朱加俊.基于深度学习的葡萄叶片黑腐病检测与

病斑分割方法研究[D].河北农业大学,2022.

[2]翟肇裕,曹益飞,徐焕良,等.农作物病虫害检测

关键技术研究综述[J].农业机械学报,2021,52(07):1-18.

[3]兰玉彬,孙斌书,张乐春,等.基于改进YOLOv5s

的自然场景下生姜叶片病虫害检测[J].农业工程学报,

2024,40(01):210-216.

[4]Krishnaswamy Rangarajan,Aravind & Raja,P. &

Ramesh, Aniirudh.(2018).Tomato crop disease classification

using pre-trained deep learning algorithm.Procedia Computer

Science.133.1040-1047.10.1016/j.procs.2018.07.070.

[5]郑建华,朱立学,朱蓉.基于多特征融合与支持向量机的葡萄病害检测[J].现代农业装备,2018(06):

54-60.

[6]Shengyi Zhao,Jizhan Liu,Shuo Wu,Multiple disease

detection method for greenhouse-cultivated strawberry based

on multiscale feature fusion Faster R_CNN,Computers and

Electronics in Agriculture,Volume 199,2022,107176,ISSN

0168-1699.

[7]曾伟辉,张文凤,陈鹏等.基于SCResNeSt的低

分辨率水稻害虫图像检测方法[J].农业机械学报,2022,

53(09):277-285.

[8]李子茂,刘恋冬,夏梦等.基于深度学习的月季

多叶片病虫害检测研究[J].中国农机化学报,2021,42

(08):169-176.

[9]Shufei Li, Kaiyu Li, Yan Qiao, Lingxian Zhang,A

multi-scale cucumber disease detection method in natural

scenes based on YOLOv5,Computers and Electronics in

Agriculture,Volume 202,2022,107363,ISSN 0168-1699.

[10]Xinxing Zhang, Yi Xun, Yaohui Chen,Automated

identification of citrus diseases in orchards using deep

learning,Biosystems Engineering,Volume 223, Part

A,2022,Pages 249-258,ISSN 1537-5110.

[11]郑 宇 达, 陈 仁 凡, 杨 长 才, 等.基 于 改 进

YOLOv5s模型的柑橘病虫害检测方法[J].华中农业大学

学报,2024,43(02):134-143.

[12]LIU R,LEHMAN J,MOLINO P,et al. An intriguing

failing of convolutional neural networks and the CoordConv

solution[C]∥Proceedings of the 32nd International

Conference on Neural Information Processing Systems. New

York: ACM,2018:9628-9639

[13]J. Dai et al.,"Deformable Convolutional

Networks,"2017 IEEE International Conference on Computer

Vision (ICCV),Venice,Italy,2017,pp.764-773.

[ 1 4 ] Z h a o y a n g N i u , G u o q i a n g Z h o n g , H u i

Yu,A review on the attention mechanism of deep

learning,Neurocomputing,Volume 452,2021,Pages 48-

62,ISSN 0925-2312.

[15]刘向举,刘洋,蒋社想.基于SimAM注意力机

制的DCN-YOLOv5水下目标检测[J/OL].重庆工商大学

学报(自然科学版):1-9[2024-06-07].

[16]ZHU X Z, HU H, LIN S, et al.Deformable

ConvNets v2:more deformable,better results[C]//

Proceedings of the 2019 IEEE Conference on Computer

Vision and Pattern Recognition, Long Beach,Jun 16-

20,2019.Piscataway:IEEE.2019:9308-9316.




DOI: http://dx.doi.org/10.12361/2661-3654-07-06-148152

Refbacks

  • 当前没有refback。