基于隐语义等多特征融合的新闻推荐算法研究
摘要
决此问题。本文构建了一种融合新闻不同视角信息的新闻特征学习模型,对新闻的标题、摘要、类别以及隐语义进
行有效利用;在此基础上,搭建一种可以刻画用户长短期混合兴趣的用户特征学习模型,探究用户的短期兴趣和长
期偏好。所提模型在大规模新闻推荐数据集上的性能稳定超越6个基准模型,反映了设计思路能有效提高新闻推荐
性能。
关键词
全文:
PDF参考
[1]Feng C. "News Recommendation Systems -
Accomplishments,Challenges & Future Directions," in IEEE
Access,vol. 8,pp. 16702-16725.
[2]Okura STagami YOno Set al. EmbeddingBased News Recommendation for Millions of Users[C]//
Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.
2017:1933-1942.
[3]Park K,Lee J,Choi J. Deep Neural Networks for
News Recommendations[C]//Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management.
2017:2255-2258.
[4]Sheu H S,Li S. Context-Aware Graph Embedding
for SessionBased News Recommendation[C]//Proceedings of
the 14th ACM Conference on Recommender Systems. 2020:
657-662.
[5]吴方照,武楚涵,安鸣霄,等.基于深度学习的
个性化新闻推荐[J].南京信息工程大学学报(自然科学
版),2019,11(3):278-285.
[6]Devlin JChang M WLee Ket al. BertPretraining of deep bidirectional transformers for language
understanding[J]. arXiv preprint arXiv:1810.04805,2018.
[7]Wu F Z,Qiao Y,Chen J H,et al. MIND:A
Large-Scale Dataset for News Recommendation[C]//
Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. 2021:3597-3606.
Refbacks
- 当前没有refback。