用于光纤陀螺的保偏空芯光子晶体光纤研究进展

金 宇龙, 龚 平, 陈 宇豪, 韩 甲旭, 李 朋辉
国营洛阳丹城无线电厂

摘要


光纤陀螺作为惯性导航系统的核心部件,广泛应用于舰载武器、卫星姿态控制等领域。传统保偏光纤由于
受到材料本身的限制,在外部环境干扰下容易产生偏振噪声和背向散射噪声,从而影响陀螺的测量精度。空芯光子
带隙光纤利用光子带隙效应将光限制在空气纤芯中传输,可有效抑制非线性效应、温度变化引起的偏振噪声和其他
环境干扰,显著提升陀螺的精度和环境适应性。本文简要介绍了空芯光子带隙光纤在陀螺领域的优势及其导光机理,
梳理了保偏光子带隙光纤近年来的研究进展,并讨论了其在高精度光纤陀螺中的应用潜力。

关键词


光纤光学;空芯光子带隙光纤;光纤陀螺;保偏光纤

全文:

PDF


参考


[1]Strandjord K L, Qiu T, Wu J, et al. Resonator fiber

optic gyro progress including observation of navigation grade

angle random walk[C]. Proc. SPIE. 2012, 8421: 842109.

[2]Sanders G A, Strandjord L K, Wu J, et al.

Development of compact resonator fiber optic gyroscopes[C].

Inertial Sensors and Systems (INERTIAL), 2017 IEEE

International Symposium on. IEEE, 2017: 168-170.

[3]R. F. Cregan, B. J. Mangan, J. C. Knight, T. A.

Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, Singlemode photonic band gap guidance of light in air [J]. Science,

1999, 285: 1537-1539.

[4]Blin S, Kim H K, Digonnet M J F, et al. Reduced

thermal sensitivity of a fiber-optic gyroscope using an aircore photonic-bandgap fiber[J]. Journal of Lightwave

Technology, 2007, 25(3): 861-865.

[5]Digonnet M, Blin S, Kim H K, et al. Sensitivity and

stability of an air-core fibre-optic gyroscope[J]. Measurement

Science and Technology, 2007, 18(10): 3089.

[6]Zhao X, Louveau J, Chamoun J, et al. Thermal

sensitivity of the birefringence of air-core fibers and

implications for the RFOG[J]. Journal of Lightwave

Technology, 2014, 32(14): 2577-2581.

[7]E. Yablonovitch, Inhibited Spontaneous Emission

in Solid-State Physics and Electronics [J]. Physical Review

Letters, 1987, 58(20): 2059-2062.

[8]S. John, Strong Localization of Photons in Certain

Disordered Dielectric Super Lattices [J]. Physical Review

Letters, 1987, 58(23): 2486-2489.

[9]F. Poletti, M. N. Petrovich, and D. J. Richardson,

Hollow-core photonic bandgap fibers: technology and

applications [J]. Nanophotonics, 2013, 2(5-6): 315-340.

[10]Saito, K., Koshiba, M.. Photonic bandgap fibers

with high birefringence. IEEE Photonics Technology Letters,

2002, 14(9), 1291-1293.

[11]Bowman, G., Luan, F., Knight, J., et al. Properties of

a hollow-core photonic bandgap fiber at 850 nm wavelength.

Optics Express, 2003, 11(14), 1613-1620.

[12]Poletti, F., Broderick, N. G. R., Richardson, D.

J., et al. The effect of core asymmetries on the polarization

properties of hollow core photonic bandgap fibers. Optics

Express, 2005, 13(22), 9115.

[13]ROBERTS P J, WILLIAMS D P, SABERT H, et

al. Design of low-loss and highly birefringent hollow-core

photonic crystal fiber [J]. Optics Express, 2006, 14(16): 7329-

7341.

[14]Mangan B, Lyngsø J K, Roberts P. Realization of

low loss and polarization maintaining hollow core photonic

crystal fibers[C]. Conference on Lasers & Electro-optics,

IEEE, 2008: JFG4.

[15]Fini J M., Nicholson, J. W., Mangan, B., et al. (2014).

Polarization maintaining single-mode low-loss hollow-core

fibres. Nature Communications, 5, 5085.

[16]M. Michieletto, J. K. Lyngsø, J. Lægsgaard, O.

Bang. Cladding defects in hollow core fibers for surface mode

suppression and improved birefringence. Optics Express, 2014

22(19): 23324-23332

[17]K. Chen, C. Wang, H. Hu, X. Shu, C. Liu.

A Single-Mode Polarization Maintaining Hollow Core

Photonic Bandgap Fiber. IEEE Photonics Technology Letters,

2016, 28(2): 2617-2620

[18]Y. Gao, C. Sima, J. Cheng, B. Cai, K. Yuan, Z.

Lian, et al. Highly-birefringent and ultra-wideband low-loss

photonic crystal fiber with rhombic and elliptical holes. Optics

Communications, 2019, 450(1): 172-175


Refbacks

  • 当前没有refback。