基于深度学习的智慧正畸系统的研究
摘要
潜力。本文提出一种基于深度学习的智慧正畸系统,集成了图神经网络(GNN)与强化学习(RL)等前沿技术,实
现对三维牙齿点云数据的精准分割与动态排牙优化。系统首先利用图神经网络对输入的口腔影像数据进行点云分割,
精确识别牙齿边界与位置特征,进而结合强化学习策略构建动态排牙模块,实现个性化治疗目标下的牙齿位移路径优
化。实验结果表明,该系统牙齿点云分割准确率达96.8%,动态排牙路径规划平均耗时37秒,显著优于对比基线方法。
关键词
全文:
PDF参考
[1]Lee J H, Yu H J, Kim M J, et al. Automated
cephalometric landmark detection with confidence regions
using Bayesian convolutional neural networks[J]. BMC Oral
Health, 2020, 20(1): 249.
[2]Hwang H W, Moon J H, Kim M G, et al. Evaluation
of automated cephalometric analysis based on the latest deep
learning method[J]. The Angle Orthodontist, 2021, 91(3):
329-335.
[3]Yu H J, Cho S R, Kim M J, et al. Automated Skeletal
Classification with Lateral Cephalometry Based on Artificial
Intelligence[J]. Journal of Dental Research, 2020, 99(1): 84-90.
[4]Zhang J, Liu M, Wang L, et al. Context-guided fully
convolutional networks for joint craniomaxillofacial bone
segmentation and landmark digitization[J]. Medical Image
Analysis, 2020, 61: 101654.
[5]Chen Y, Chen Z, Zhang C, Wang F, Yang X,
Wang Y, Cai Z, Yang L, Liu H, Lin G.GaussianEditor: Swift
and Controllable 3D Editing with Gaussian Splatting[J].
arXiv:2402.11490, 2024.
Refbacks
- 当前没有refback。
