行人重识别技术理论研究综述
摘要
实生活中具有重要的应用价值,如智能安防、智能交通和商业分析等。然而,该技术的实践应用面临诸多挑战,如
摄取角度不同统一、成图分辨率高低参差、受光照摄有差别、甚至还会出现干扰物遮挡以及行人姿态变化等一系列
的问题。本文对行人重识别技术的研究现状进行了综述。详细介绍了受限制场景下基于表征学习和度量学习的方法,
通用场景下的多模态重识别、无监督学习与半监督学习等研究方向。最后,本文总结了行人重识别技术的现状,并
对未来的研究方向提出了展望。
关键词
全文:
PDF参考
[1]张永飞,杨航远,张雨佳,豆朝鹏,廖胜才,郑
伟诗,张史梁,叶茫,晏轶超,and李俊杰,“行人再识
别技术研究进展,”中国图象图形学报,vol. 28,no. 6,
pp. 1829-1862,2023.
[2]“震惊全国8年之久的周克华案是怎么侦破的?”,
https://www.163.com/dy/article/DA9LMJ3S0514DP91.
html,%202018-02-10,2.10,2018-2-10
[3]M. Ye, J. Shen, G. Lin, T. Xiang, L. Shao, and S.
C. H. Hoi,“Deep Learning for Person Re-Identification: A
Survey and Outlook,”IEEE Trans Pattern Anal Mach Intell,
vol. 44, no. 6, pp. 2872-2893, Jun, 2022.[4]R. Yu, D. Du, R. LaLonde, D. Davila, C. Funk, A.
Hoogs, and B. Clipp, "Cascade transformers for end-to-end
person search." pp. 7267-7276
[5]Y. Suh, J. Wang, S. Tang, T. Mei, and K. M. Lee,
"Part-Aligned Bilinear Representations for Person Reidentification," Lecture Notes in Computer Science. pp. 418-
437, 2018.
[6]W. Deng, L. Zheng, Q. Ye, G. Kang, Y. Yang, and
J. Jiao, "Image-Image Domain Adaptation with Preserved
Self-Similarity and Domain-Dissimilarity for Person Reidentification." pp. 994-1003.
[7]D. Chen, H. Li, X. Liu, Y. Shen, Z. Yuan, and X.
J. a. e.-p. Wang, "Improving Deep Visual Representation
for Person Re-identification by Global and Local Imagelanguage Association," arXiv180801571C, 2018.
[8]J. Zuo, H. Zhou, Y. Nie, F. Zhang, T. Guo, N.
Sang, Y. Wang, and C. Gao,“UFineBench: Towards Textbased Person Retrieval with Ultra-fine Granularity,”arXiv
preprint, arXiv:.03441, 2023.
[9]Y. Qin, Y. Chen, D. Peng, X. Peng, J. T. Zhou, and
P. Hu,“Noisy-Correspondence Learning for Text-to-Image
Person Re-identification,”arXiv preprint, arXiv:.09911, 2023.
[10]K. Ren, and L. Zhang,“Implicit Discriminative
Knowledge Learning for Visible-Infrared Person ReIdentification,”arXiv preprint, arXiv:.11708, 2024
[11]M. Ye, X. Lan, Z. Wang, and P. C. Yuen,“BiDirectional Center-Constrained Top-Ranking for Visible
Thermal Person Re-Identification,”Ieee Transactions on
Information Forensics and Security, vol. 15, pp. 407-419,
Jun, 2019.
[12]C. Zou, Z. Chen, Z. Cui, Y. Liu, and C. Zhang,
"Discrepant and multi-instance proxies for unsupervised
person re-identification." pp. 11058-11068.
[13]W. Zhuang, Y. Wen, and S. Zhang, "Joint
optimization in edge-cloud continuum for federated
unsupervised person re-identification." pp. 433-441.
Refbacks
- 当前没有refback。