“AXON”:一个面向专卖执法领域的闭环、 多维知识增强框架
摘要
挑战,本文提出了一个名为“AXON”的闭环、多维知识增强框架。AXON的核心贡献在于:1)一套面向业务的知
识原子化与多维表示模型,它通过“八维坐标系”对知识进行深度语义标注与结构化,显著提升了检索上下文的精
确性;2)一条人机协同的自动化知识处理流水线,通过闭环工作流,将新增的专家知识无缝地、自动化地注入知识
库,实现知识体系的持续迭代。实验结果表明,相较于传统检索增强生成(RAG)方法,本框架在关键业务任务上
的可用性与逻辑性平均提升超过60%,证明了该方案在赋能专业领域AI应用上的显著成效。
关键词
全文:
PDF参考
[1]Lewis, P., Pérez, E., Piktus, A., et al. (2020).
Retrieval-augmented generation for knowledge-intensive
NLP tasks. Advances in Neural Information Processing
Systems, 33, 9459-9474.
[2]Gao, Y., Xiong, Y., Gao, X., et al. (2023). Retrievalaugmented generation for large language models: A survey.
arXiv preprint arXiv:2312.10997.
[3]Amershi, S., Weld, D., Vorvoreanu, M., et al. (2019).
Guidelines for human-AI interaction. In Proceedings of the
2019 CHI conference on human factors in computing systems
(pp. 1-13).
[4]Shneiderman, B. (2020). Human-centered artificial
intelligence: Reliable, safe, and trustworthy. International
Journal of Human-Computer Interaction, 36(6), 495-504.
[5]Zaharia, M., Chen, A., Zou, J., & Stoica, I. (2023).
Operationalizing large language models: An engineering view.
arXiv preprint arXiv:2311.08119.
Refbacks
- 当前没有refback。
