基于GSCFS-YOLOX算法的道路边坡病害检测方法研究
摘要
关键词
全文:
PDF参考
[1]陈滨华,高歆雨,王浩.福建某高速公路边坡滚石灾害分析[J].中文科技期刊数据库(引文版)工程技术,2022(8):5.
[2]张俊杰.基于深度学习的隧道表观病害智能识别研究[D].中南大学,2023.
[3]王能文,张涛.改进YOLOX-S实时多尺度交通标志检测算法[J].计算机工程与应用,2023,59(21):167-175.
[4]陈乔松,周丽,毛彦嵋,等.基于浅层空间特征融合与自适应通道筛选的目标检测方法[J].江苏大学学报:自然科学版,2022, 43(1):67-74.
[5] He P , Chen W , Pang L ,et al.The survey of one-stage anchorfree real-time object detection algorithms[J].Sixth Conference on Frontiers in Optical Imaging and Technology: Imaging Detection and Target Recognition, 2024:2.
[6]费春国,文章,庄子波.多尺度特征与注意力检测头的轻量化FOD检测[J].自动化仪表,2024,45(10):110-116.
[7] Yang X , Sheng H , Geng N ,et al.Research on Road Disease Detection Algorithm Based on Improved YOLOv5s[J].2024 6th International Conference on Electronics and Communication, Network and Computer Technology (ECNCT), 2024:305-309.
Refbacks
- 当前没有refback。
