生成式人工智能驱动的教学技术创新: 多元教学法的融合与实践
摘要
法相结合。文章首先介绍了生成式人工智能在教育领域的最新发展,阐述了其在提升学习互动、个性化教学和提高
教学效率方面的潜力。接着,基于法律课程的特性,分析了案例教学法和世界咖啡教学法的独特优势,探讨了这些
传统教学法在数字化和人工智能背景下的创新应用。通过结合生成式人工智能的实时反馈、知识生成与讨论引导功
能,本文提出了一种多元化教学模式,能够有效提升学生的参与感和学习效果。最终,文章总结了这一模式的实践
应用价值,并提出未来在法学教育领域进一步探索的可能方向。
关键词
全文:
PDF参考
[1]【法】让·皮亚杰,《教育科学与儿童心理学》,
教育科学出版社,2018年.
[2]【苏】列夫·维果斯基,《社会中的心智:高级心
理过程的发展》,北京师范大学出版社,2018年.
[3]Langdell, C.C. (1871). A Selection of Cases on the
Law of Contracts. Little, Brown and Company.
[4]Dewey, J. (1916). Democracy and Education.
Macmillan.
[5]Posner, R. (2008). How Judges Think. Harvard
University Press.
[6]Christensen, C.R. (1987). Teaching and the Case
Method. Harvard Business School Press.
[7]Anderson, T. (2008). The Theory and Practice of
Online Learning. Athabasca University Press.
[8]Allen, I.E., & Seaman, J. (2015). Grade Level:
Tracking Online Education in the United States. Babson
Survey Research Group.
[9]Garrison, D.R., & Vaughan, N.D. (2008). Blended
Learning in Higher Education: Framework, Principles, and
Guidelines. Jossey-Bass.
[10]Davenport, T.H., & Ronanki, R. (2018). Artificial
Intelligence for the Real World. Harvard Business Review.
[11]Bonfield C A, Salter M, Longmuir A, et al.
Transformation or evolution?: Education 4.0, teaching and
learning in the digital age[J]. Higher education pedagogies,
2020, 5(1): 223-246.
[12]Hattie, J., & Yates, G. C. R. (2014). Visible Learning
and the Science of How We Learn. Routledge.
[13]Baker, R. S., & Siemens, G. (2014). Educational
Data Mining and Learning Analytics. In R. K. Sawyer (Ed.),
The Cambridge Handbook of the Learning Sciences (2nd ed.,
pp. 253-272). Cambridge University Press.
Refbacks
- 当前没有refback。