基于深度学习的无线信号语义分割方法综述
摘要
图作为无线信号的重要表示形式,能够同时展现信号的时域和频域特征。本文综述了基于深度学习的无线信号时频
图语义分割方法,系统梳理了该领域的研究现状、关键技术和发展趋势。文章首先回顾了时频分析和语义分割的基
础方法,然后重点分析了卷积神经网络(CNN)和视觉Transformer(ViT)在频谱分割任务中的应用,探讨了信号
参数联合预测、多尺度特征融合等关键技术。最后总结了该领域面临的主要挑战和未来发展方向,为相关研究人员
提供参考。
关键词
全文:
PDF参考
[1]Long, J., Shelhamer, E., & Darrell, T. (2015).
Fully convolutional networks for semantic segmentation.
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).
[2]Ronneberger, O., Fischer, P., & Brox, T. (2015).
U-net: Convolutional networks for biomedical image
segmentation. International Conference on Medical Image
Computing and Computer-Assisted Intervention (MICCAI).
[3]Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez,
J. M., & Luo, P. (2021). SegFormer: Simple and efficient
design for semantic segmentation with transformers. Advances
in Neural Information Processing Systems (NeurIPS).
[4]Chen, L. C., Papandreou, G., Schroff, F., & Adam,
H. (2017). Rethinking atrous convolution for semantic image
segmentation. arXiv preprint arXiv:1706.05587.
[5]Dosovitskiy, A., et al. (2020). An image is worth
16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929.
[6]Howard, A., et al. (2019). Searching for mobilenetv3.
Proceedings of the IEEE International Conference on
Computer Vision (ICCV).
Refbacks
- 当前没有refback。
