基于自适应虚拟阻抗的多VSG并联系统振荡抑制策略
摘要
系统的稳定性问题引起了广泛关注。虚拟阻抗技术被广泛用于改善并联系统的功率分配和抑制同步谐振,但其引入
的额外阻尼往往以牺牲系统暂态同步稳定性为代价,在小信号稳定与暂态稳定之间形成了固有矛盾。为解决此问
题,本文针对多VSG并联运行时因线路阻抗参数差异导致的低频功率振荡问题,提出了一种基于自适应虚拟阻抗
(Adaptive Virtual Impedance,AVI)的振荡抑制策略。该策略首先基于 坐标系下的瞬时功率理论,通过高通滤波器快
速、灵敏地提取系统的有功功率振荡分量;随后,设计了一种无需单元间通信的分布式自适应律,根据功率波动的
包络实时调节虚拟阻抗值,从而在振荡发生时动态地为系统注入正阻尼。在中搭建了含两台VSG的并联系统仿真模
型。通过暂态仿真、参数鲁棒性测试及小信号模型验证,证明了所提策略的有效性。结果表明,在负荷突增扰动下,
与固定参数控制相比,所提策略能将系统功率振荡的收敛时间缩短约65%,并将最大频率偏差降低约63%,有效解耦
了振荡抑制与暂态响应之间的性能冲突。
关键词
全文:
PDF参考
[1]ZHANG Y, MA T, YANG H. Grid-connected
photovoltaic battery systems: a comprehensive review and
perspectives[J]. Applied Energy, 2022, 328: 120182.
[2]ROCABERT J, LUNA A, BLAABJERG F, et al.
Control of power converters in AC microgrids[J]. IEEE
Transactions on Power Electronics, 2012, 27(11): 4734-4749.
[3]CHEN M, ZHOU D, BLAABJERG F. Enhanced
transient angle stability control of grid-forming converter
based on virtual synchronous generator[J]. IEEE Transactions
on Industrial Electronics, 2022, 69(9): 9133-9144.
[4]CHEN S, SUN Y, HAN H, et al. Dynamic frequency
performance analysis and improvement for parallel VSG
39
科研项目论坛 | 第3卷/第21期
Forum on Scientific Research Projects
systems considering virtual inertia and damping coefficient[J].
IEEE Journal of Emerging and Selected Topics in Power
Electronics, 2023, 11(1): 478-489.
[5]HUANG X, QI D, CHEN Y, et al. Distributed selftriggered privacy-preserving secondary control of VSG-based
AC microgrids[J]. IEEE Transactions on Smart Grid, 2025,
16(2): 850-862.
[6]DE BRABANDERE K, BOLSENS B, VANDEN
KEYBUS J, et al. A voltage and frequency droop control
method for parallel inverters[J]. IEEE Transactions on Power
Electronics, 2007, 22(4): 1107-1115.
[7]CHEN S, SUN Y, HAN H, et al. A modified VSG
control scheme with virtual resistance to enhance both smallsignal stability and transient synchronization stability[J]. IEEE
Transactions on Power Electronics, 2023, 38(5): 6005-6014.
[8]LI X, FENG P, TIAN Z, et al. Transient stability
analysis for grid-tied VSG considering high-order nonlinear
interactions between active and reactive power control
loops[J]. IEEE Transactions on Power Electronics, 2024,
39(6): 6974-6988.
[9]LIU J, MIURA Y, ISE T. Oscillation damping of
parallel-connected VSGs with adaptive virtual impedance[J].
IEEE Transactions on Industry Applications, 2019, 55(1):
698-708.
[10]JAFARIAZAD A H, TAHER S A, DEHGHANI
ARANI Z, et al. Adaptive supplementary control of VSG
based on virtual impedance for current limiting in gridconnected and islanded microgrids[J]. IEEE Transactions on
Smart Grid, 2024, 15(1): 89-98.
[11]GE P, XIAO F, TU C, et al. Transient stability
enhancement control for VSG considering power angle
stability and fault current limitation[J]. CSEE Journal of Power
and Energy Systems, 2025, 11(1): 173-183.
[12]GE J, YAO Z, WU M, et al. Tackling data scarcity
in machine learning-based CFRP drilling performance
prediction through a broad learning system with virtual sample
generation (BLS-VSG)[J]. Composites Part B: Engineering,
2025, 305: 112701.
[13]HAO X, YANG S, LIU R, et al. VSLM: Virtual
signal large model for few-shot wideband signal detection
and recognition[J]. IEEE Transactions on Wireless
Communications, 2025, 24(2): 909-925.
[14]GUERRERO J M, VASQUEZ J C, MATAS J,
et al. Hierarchical control of droop-controlled AC and DC
microgrids— a general approach toward standardization[J].
IEEE Transactions on Industrial Electronics, 2011, 58(1):
158-172.
[15]BENHMINDOUCH Z, MOUFID S, AITOMAR A, et al. A novel reinforcement learning policy
optimization based adaptive VSG control technique for
improved frequency stabilization in AC microgrids[J]. Electric
Power Systems Research, 2024, 230: 110269.
Refbacks
- 当前没有refback。
