DBO-SVM与SVM预测wAMD患者抗VEGF治疗短期反应性能对比
摘要
能,旨在提升SVM模型的性能,以帮助医生为每位患者制定个性化和有效的治疗方案。方法:回顾性收集在广西医
科大学第一附属医院眼科就诊治疗的96名接受抗VEGF治疗的wAMD患者数据,包括人口统计特征、基线及前3个
月的临床特征和OCT数据。构建SVM模型以及结合DBO优化器的改良模型DBO-SVM,按14:6:5将数据划分为
训练集和内、外部验证集,用于训练和验证模型,通过AUC、灵敏度以及预测准确率等指标比较优化前后模型预测
性能,并评估模型拟合程度及泛化能力。结果:DBO-SVM和SVM模型内部验证AUC、灵敏度和预测准确率分别
是0.76/0.75,0.82/0.82,0.76/0.72;DBO-SVM和SCM模型的外部验证AUC、灵敏度和预测准确率分别是0.89/0.77,
0.87/0.60,0.75/0.67。DBO-SVM模型内外部验证结果相似,预测性能良好且泛化能力较高。DBO-SVM模型预测
性能整体优于SVM模型。结论:DBO优化算法显著提升了SVM模型在预测wAMD患者对抗VEGF治疗反应的性能,
增强了其有效性和应用潜力,具有更高的临床和公共卫生价值。
关键词
全文:
PDF参考
[1]黄叔仁.老年性黄斑变性[J].实用眼科杂志,1992,
10(7):4.
[2]Gheorghe A, Mahdi L, Musat O. Age-related macular
degeneration [J]. Romanian journal of ophthalmology, 2015,
59(2): 74.
[3]Wong W L, Su X, Li X, et al. Global prevalence
of age-related macular degeneration and disease burden
projection for 2020 and 2040: A systematic review and metaanalysis [J]. The Lancet Global Health, 2014, 2(2): e106-e16.
[4]Xi-Yan A, Jiu-Mei S. Treatment of wet agerelated macular degeneration [J]. International Review of
Ophthalmology, 2015, 39(4): 265.
[5]Yang S, Zhao J, Sun X. Resistance to anti-vegf
therapy in neovascular age-related macular degeneration: A
comprehensive review [J]. Drug design, development and
therapy, 2016: 1857-67.
[6]Ricci F, Bandello F, Navarra P, et al. Neovascular
age-related macular degeneration: Therapeutic management
and new-upcoming approaches [J]. International journal of
molecular sciences, 2020, 21(21): 8242.
[7]Pugazhendhi A, Hubbell M, Jairam P, et al.
Neovascular macular degeneration: A review of etiology,
risk factors, and recent advances in research and therapy [J].
International Journal of Molecular Sciences, 2021, 22(3):
1170.
[8]Perepelkina T, Fulton A B. Artificial intelligence
(ai) applications for age-related macular degeneration (amd)
and other retinal dystrophies; proceedings of the Seminars in
ophthalmology, F, 2021 [C]. Taylor & Francis.
[9]Bogunović H, Waldstein S M, Schlegl T, et al.
Prediction of anti-vegf treatment requirements in neovascular
amd using a machine learning approach [J]. Investigative
ophthalmology & visual science, 2017, 58(7): 3240-8.
[10]Perkins S W, Wu A K, Singh R P. Predictors
of limited early response to anti-vascular endothelial
growth factor therapy in neovascular age-related macular
degeneration with machine learning feature importance [J].
Saudi Journal of Ophthalmology, 2022, 36(3): 315-21.
[11]Singh L K, Khanna M, Thawkar S. A novel hybrid
robust architecture for automatic screening of glaucoma
using fundus photos, built on feature selection and machine
learning‐nature driven computing [J]. Expert Systems, 2022,
39(10): e13069.
[12]Zhang H, Yang S, Xu D. An improved optimization
dung beetle algorithm; proceedings of the 2023 4th
International Symposium on Computer Engineering and
Intelligent Communications (ISCEIC), F, 2023 [C]. IEEE.
[13]Alamgeer M, Alruwais N, Alshahrani H M, et al.
Dung beetle optimization with deep feature fusion model for
lung cancer detection and classification [J]. Cancers, 2023,
15(15): 3982.
[14]Amoaku W, Chakravarthy U, Gale R, et al.
Defining response to anti-vegf therapies in neovascular amd
[J]. Eye, 2015, 29(6): 721-31.
[15]Chandra R S, Ying G-s. Evaluation of multiple
machine learning models for predicting number of anti-vegf
injections in the comparison of amd treatment trials (catt) [J].
Translational Vision Science & Technology, 2023, 12(1): 18-.
[16]Huang W-C, Lee P-L, Liu Y-T, et al. Support
vector machine prediction of obstructive sleep apnea in a large-scale chinese clinical sample [J]. Sleep, 2020, 43(7): zsz295.
[17]Vichianin Y, Khummongkol A, Chiewvit P, et
al. Accuracy of support-vector machines for diagnosis of
alzheimer’s disease, using volume of brain obtained by
structural mri at siriraj hospital [J]. Frontiers in neurology,
2021, 12: 640696.
[18]Perkins S W, Wu A K, Singh R P. Machine learning
prediction of limited early response to anti-vegf therapy in
neovascular age-related macular degeneration in routine
clinical practice [J]. Investigative Ophthalmology & Visual
Science, 2022, 63(7): 322–F0153-322–F.
[19]Kar S S, Cetin H, Lunasco L, et al. Oct-derived
radiomic features predict anti–vegf response and durability
in neovascular age-related macular degeneration [J].
Ophthalmology Science, 2022, 2(4): 100171.
[20]Khan B, Fatima H, Qureshi A, et al. Drawbacks
of artificial intelligence and their potential solutions in the
healthcare sector [J]. Biomedical Materials & Devices, 2023,
1(2): 731-8.
[21]Zhou X, Wen H, Li Z, et al. An interpretable model
for the susceptibility of rainfall-induced shallow landslides
based on shap and xgboost [J]. Geocarto International, 2022,
37(26): 13419-50.
Refbacks
- 当前没有refback。