SMARCA 4/BRG1缺失影响SWI/SNF功能 导致肺部恶性肿瘤的临床研究进展
摘要
具有转移早、恶性程度较高、预后差、生存率低等特点。SMARCA 4是一种肿瘤抑制因子,位于 19号染色体短臂,
具有调控基因表达,分化和转录的功能。SWI/SNF染色质重组复合物,是一个还含有多个亚基的多蛋白复合体,通
过核小体拓扑结构调节转录,从而影响染色质修复和调控细胞的增殖分化,SMARCA 4/BRG 1可以激活 SWI/SNF
复合物,由此可见 SMARCA 4/BRG 1在肿瘤的发生发展中起着重要的作用。
关键词
全文:
PDF参考
[1]WILSON B G, ROBERTS C W M. SWI/SNF
nucleosome remodellers and cancer [J]. Nature Reviews
Cancer, 2011, 11(7): 481-92.
[2]MEDINA P P, CARRETERO J, FRAGA M F, et
al. Genetic and epigenetic screening for gene alterations of the
chromatin-remodeling factor, SMARCA4/BRG1, in lung
tumors [J]. Genes Chromosomes Cancer, 2004, 41(2): 170-7.
[3]NAITO T, UMEMURA S, NAKAMURA H, et
al. Successful treatment with nivolumab for SMARCA4-
deficient non-small cell lung carcinoma with a high tumor
mutation burden: A case report [J]. Thorac Cancer, 2019,
10(5): 1285-8.
[4]HELMING K C, WANG X, ROBERTS C W M.
Vulnerabilities of mutant SWI/SNF complexes in cancer [J].
Cancer Cell, 2014, 26(3): 309-17.
[5]DYKHUIZEN E C, HARGREAVES D C, MILLER
E L, et al. BAF complexes facilitate decatenation of DNA by
topoisomerase IIalpha [J]. Nature, 2013, 497(7451): 624-7.
[6]吴娟, 黄曦, 李佳嘉, et al. SMARCA4缺失型非小
细胞肺癌的 SPP1表达及其与 PD-L1的关系 %J 中国临床
药理学与治疗学 [J]. 1-15.
[7]BITLER B G, WU S, PARK P H, et al. ARID1A_xfffe_mutated ovarian cancers depend on HDAC6 activity [J].
Nature Cell Biology, 2017, 19(8): 962-73.
[8]HOLSTEIN S A, MCCARTHY P L. Immunomodulatory
Drugs in Multiple Myeloma: Mechanisms of Action and
Clinical Experience [J]. Drugs, 2017, 77(5): 505-20.
[9]SCHOENFELD A J, BANDLAMUDI C, LAVERY
J A, et al. The Genomic Landscape of SMARCA4 Alterations
and Associations with Outcomes in Patients with Lung
Cancer [J]. Clin Cancer Res, 2020, 26(21): 5701-8.
[10]RIZVI N A, HELLMANN M D, SNYDER A,
et al. Cancer immunology. Mutational landscape determines
sensitivity to PD-1 blockade in non-small cell lung cancer [J].
Science, 2015, 348(6230): 124-8.
[11]HELLMANN M D, NATHANSON T, RIZVI
H, et al. Genomic Features of Response to Combination
Immunotherapy in Patients with Advanced Non-Small-Cell
Lung Cancer [J]. Cancer Cell, 2018, 33(5): 843-52 e4.
[12]GOODMAN A M, KATO S, BAZHENOVA L,
et al. Tumor Mutational Burden as an Independent Predictor
of Response to Immunotherapy in Diverse Cancers [J]. Mol
Cancer Ther, 2017, 16(11): 2598-608.
[13]SAMSTEIN R M, LEE C H, SHOUSHTARI
A N, et al. Tumor mutational load predicts survival after
immunotherapy across multiple cancer types [J]. Nat Genet,
2019, 51(2): 202-6.
[14]GAINOR J F, SHAW A T, SEQUIST L V, et al.
EGFR Mutations and ALK Rearrangements Are Associated
with Low Response Rates to PD-1 Pathway Blockade in
Non-Small Cell Lung Cancer: A Retrospective Analysis [J].
Clin Cancer Res, 2016, 22(18): 4585-93.
[15]JIANG T, ZHOU C, REN S. Role of IL-2 in
cancer immunotherapy [J]. OncoImmunology, 2016, 5(6).
[16]RIZVI H, SANCHEZ-VEGA F, LA K, et al.
Molecular Determinants of Response to Anti–Programmed
Cell Death (PD)-1 and Anti–Programmed Death-Ligand 1
(PD-L1) Blockade in Patients With Non–Small-Cell Lung
Cancer Profiled With Targeted Next-Generation Sequencing
[J]. Journal of Clinical Oncology, 2018, 36(7): 633-41.
[17]SKOULIDIS F, GOLDBERG M E, GREENAWALT
D M, et al. STK11/LKB1 Mutations and PD-1 Inhibitor
Resistance in KRAS-Mutant Lung Adenocarcinoma [J]. Cancer
Discov, 2018, 8(7): 822-35.
[18]MOK T S, WU Y-L, THONGPRASERT S,
et al. Gefitinib or Carboplatin–Paclitaxel in Pulmonary
Adenocarcinoma [J]. New England Journal of Medicine,
149
现代医学前沿 | 第2卷/第11期
Advances in Mordern Medical
2009, 361(10): 947-57.
[19]SEQUIST L V, YANG J C-H, YAMAMOTO N,
et al. Phase III Study of Afatinib or Cisplatin Plus Pemetrexed
in Patients With Metastatic Lung Adenocarcinoma With
EGFR Mutations [J]. Journal of Clinical Oncology, 2013,
31(27): 3327-34.
[20]SOLOMON B J, MOK T, KIM D W, et al. Firstline crizotinib versus chemotherapy in ALK-positive lung
cancer [J]. N Engl J Med, 2014, 371(23): 2167-77.
[21]KWAK E L, BANG Y-J, CAMIDGE D R, et al.
Anaplastic Lymphoma Kinase Inhibition in Non–Small-Cell
Lung Cancer [J]. New England Journal of Medicine, 2010,
363(18): 1693-703.
[22]SKOULIDIS F, LI B T, DY G K, et al. Sotorasib
for Lung Cancers with KRAS p.G12C Mutation [J]. N Engl J
Med, 2021, 384(25): 2371-81.
[23]PAIK P K, FELIP E, VEILLON R, et al. Tepotinib
in Non-Small-Cell Lung Cancer with MET Exon 14
Skipping Mutations [J]. N Engl J Med, 2020, 383(10): 931-43.
[24]WOLF J, SETO T, HAN J Y, et al. Capmatinib in
MET Exon 14-Mutated or MET-Amplified Non-SmallCell Lung Cancer [J]. N Engl J Med, 2020, 383(10): 944-57.
[25]PLANCHARD D, SMIT E F, GROEN H J M,
et al. Dabrafenib plus trametinib in patients with previously
untreated BRAF(V600E)-mutant metastatic non-small-cell
lung cancer: an open-label, phase 2 trial [J]. Lancet Oncol,
2017, 18(10): 1307-16.
[26]LEVINE A J, OREN M. The first 30 years of p53:
growing ever more complex [J]. Nat Rev Cancer, 2009,
9(10): 749-58.
[27]SKOULIDIS F, HEYMACH J V. Co-occurring
genomic alterations in non-small-cell lung cancer biology
and therapy [J]. Nat Rev Cancer, 2019, 19(9): 495-509.
[28]DRILON A, OXNARD G R, TAN D S W, et al.
Efficacy of Selpercatinib in RET Fusion-Positive Non-SmallCell Lung Cancer [J]. N Engl J Med, 2020, 383(9): 813-24
Refbacks
- 当前没有refback。