SMARCA 4/BRG1缺失影响SWI/SNF功能 导致肺部恶性肿瘤的临床研究进展

徐 晓婉1, 杨 紫娟1, 刘 志波2
1、青海大学
2、青海红十字医院肿瘤内科

摘要


SMARCA 4缺失型肺部肿瘤(SMARCA 4-deficient lung cancer)属于一种罕见的原发于肺的恶性上皮肿瘤,
具有转移早、恶性程度较高、预后差、生存率低等特点。SMARCA 4是一种肿瘤抑制因子,位于 19号染色体短臂,
具有调控基因表达,分化和转录的功能。SWI/SNF染色质重组复合物,是一个还含有多个亚基的多蛋白复合体,通
过核小体拓扑结构调节转录,从而影响染色质修复和调控细胞的增殖分化,SMARCA 4/BRG 1可以激活 SWI/SNF
复合物,由此可见 SMARCA 4/BRG 1在肿瘤的发生发展中起着重要的作用。

关键词


SMARCA 4;非小细胞肺癌;综述

全文:

PDF


参考


[1]WILSON B G, ROBERTS C W M. SWI/SNF

nucleosome remodellers and cancer [J]. Nature Reviews

Cancer, 2011, 11(7): 481-92.

[2]MEDINA P P, CARRETERO J, FRAGA M F, et

al. Genetic and epigenetic screening for gene alterations of the

chromatin-remodeling factor, SMARCA4/BRG1, in lung

tumors [J]. Genes Chromosomes Cancer, 2004, 41(2): 170-7.

[3]NAITO T, UMEMURA S, NAKAMURA H, et

al. Successful treatment with nivolumab for SMARCA4-

deficient non-small cell lung carcinoma with a high tumor

mutation burden: A case report [J]. Thorac Cancer, 2019,

10(5): 1285-8.

[4]HELMING K C, WANG X, ROBERTS C W M.

Vulnerabilities of mutant SWI/SNF complexes in cancer [J].

Cancer Cell, 2014, 26(3): 309-17.

[5]DYKHUIZEN E C, HARGREAVES D C, MILLER

E L, et al. BAF complexes facilitate decatenation of DNA by

topoisomerase IIalpha [J]. Nature, 2013, 497(7451): 624-7.

[6]吴娟, 黄曦, 李佳嘉, et al. SMARCA4缺失型非小

细胞肺癌的 SPP1表达及其与 PD-L1的关系 %J 中国临床

药理学与治疗学 [J]. 1-15.

[7]BITLER B G, WU S, PARK P H, et al. ARID1A_xfffe_mutated ovarian cancers depend on HDAC6 activity [J].

Nature Cell Biology, 2017, 19(8): 962-73.

[8]HOLSTEIN S A, MCCARTHY P L. Immunomodulatory

Drugs in Multiple Myeloma: Mechanisms of Action and

Clinical Experience [J]. Drugs, 2017, 77(5): 505-20.

[9]SCHOENFELD A J, BANDLAMUDI C, LAVERY

J A, et al. The Genomic Landscape of SMARCA4 Alterations

and Associations with Outcomes in Patients with Lung

Cancer [J]. Clin Cancer Res, 2020, 26(21): 5701-8.

[10]RIZVI N A, HELLMANN M D, SNYDER A,

et al. Cancer immunology. Mutational landscape determines

sensitivity to PD-1 blockade in non-small cell lung cancer [J].

Science, 2015, 348(6230): 124-8.

[11]HELLMANN M D, NATHANSON T, RIZVI

H, et al. Genomic Features of Response to Combination

Immunotherapy in Patients with Advanced Non-Small-Cell

Lung Cancer [J]. Cancer Cell, 2018, 33(5): 843-52 e4.

[12]GOODMAN A M, KATO S, BAZHENOVA L,

et al. Tumor Mutational Burden as an Independent Predictor

of Response to Immunotherapy in Diverse Cancers [J]. Mol

Cancer Ther, 2017, 16(11): 2598-608.

[13]SAMSTEIN R M, LEE C H, SHOUSHTARI

A N, et al. Tumor mutational load predicts survival after

immunotherapy across multiple cancer types [J]. Nat Genet,

2019, 51(2): 202-6.

[14]GAINOR J F, SHAW A T, SEQUIST L V, et al.

EGFR Mutations and ALK Rearrangements Are Associated

with Low Response Rates to PD-1 Pathway Blockade in

Non-Small Cell Lung Cancer: A Retrospective Analysis [J].

Clin Cancer Res, 2016, 22(18): 4585-93.

[15]JIANG T, ZHOU C, REN S. Role of IL-2 in

cancer immunotherapy [J]. OncoImmunology, 2016, 5(6).

[16]RIZVI H, SANCHEZ-VEGA F, LA K, et al.

Molecular Determinants of Response to Anti–Programmed

Cell Death (PD)-1 and Anti–Programmed Death-Ligand 1

(PD-L1) Blockade in Patients With Non–Small-Cell Lung

Cancer Profiled With Targeted Next-Generation Sequencing

[J]. Journal of Clinical Oncology, 2018, 36(7): 633-41.

[17]SKOULIDIS F, GOLDBERG M E, GREENAWALT

D M, et al. STK11/LKB1 Mutations and PD-1 Inhibitor

Resistance in KRAS-Mutant Lung Adenocarcinoma [J]. Cancer

Discov, 2018, 8(7): 822-35.

[18]MOK T S, WU Y-L, THONGPRASERT S,

et al. Gefitinib or Carboplatin–Paclitaxel in Pulmonary

Adenocarcinoma [J]. New England Journal of Medicine,

149

现代医学前沿 | 第2卷/第11期

Advances in Mordern Medical

2009, 361(10): 947-57.

[19]SEQUIST L V, YANG J C-H, YAMAMOTO N,

et al. Phase III Study of Afatinib or Cisplatin Plus Pemetrexed

in Patients With Metastatic Lung Adenocarcinoma With

EGFR Mutations [J]. Journal of Clinical Oncology, 2013,

31(27): 3327-34.

[20]SOLOMON B J, MOK T, KIM D W, et al. Firstline crizotinib versus chemotherapy in ALK-positive lung

cancer [J]. N Engl J Med, 2014, 371(23): 2167-77.

[21]KWAK E L, BANG Y-J, CAMIDGE D R, et al.

Anaplastic Lymphoma Kinase Inhibition in Non–Small-Cell

Lung Cancer [J]. New England Journal of Medicine, 2010,

363(18): 1693-703.

[22]SKOULIDIS F, LI B T, DY G K, et al. Sotorasib

for Lung Cancers with KRAS p.G12C Mutation [J]. N Engl J

Med, 2021, 384(25): 2371-81.

[23]PAIK P K, FELIP E, VEILLON R, et al. Tepotinib

in Non-Small-Cell Lung Cancer with MET Exon 14

Skipping Mutations [J]. N Engl J Med, 2020, 383(10): 931-43.

[24]WOLF J, SETO T, HAN J Y, et al. Capmatinib in

MET Exon 14-Mutated or MET-Amplified Non-SmallCell Lung Cancer [J]. N Engl J Med, 2020, 383(10): 944-57.

[25]PLANCHARD D, SMIT E F, GROEN H J M,

et al. Dabrafenib plus trametinib in patients with previously

untreated BRAF(V600E)-mutant metastatic non-small-cell

lung cancer: an open-label, phase 2 trial [J]. Lancet Oncol,

2017, 18(10): 1307-16.

[26]LEVINE A J, OREN M. The first 30 years of p53:

growing ever more complex [J]. Nat Rev Cancer, 2009,

9(10): 749-58.

[27]SKOULIDIS F, HEYMACH J V. Co-occurring

genomic alterations in non-small-cell lung cancer biology

and therapy [J]. Nat Rev Cancer, 2019, 19(9): 495-509.

[28]DRILON A, OXNARD G R, TAN D S W, et al.

Efficacy of Selpercatinib in RET Fusion-Positive Non-SmallCell Lung Cancer [J]. N Engl J Med, 2020, 383(9): 813-24


Refbacks

  • 当前没有refback。