使用人工智能技术进行肺部CT纹理分析 ——应用、局限性与临床潜力的综合分析
摘要
像特征对非资深影像医师可能难以识别,导致诊断延误或重复检查,增加患者辐射暴露风险。因此,尽可能从有限
影像中提取疾病特征显得尤为重要。
基于人工智能的CT纹理分析可以检测人眼难以察觉的特征,提供量化、客观的诊断评估。为全面了解肺部病变
纹理分析现状,本综述总结了相关研究,重点探讨两大研究流程:基于模型的方法(如深度学习)和基于定量分析
的方法。此外,本文分析了这些技术的应用现状及局限性,提出人工智能在辅助诊断中的主要挑战,以期帮助患者
尽早确诊、减少重复检查,并为未来研究提供指导。
关键词
全文:
PDF参考
[1]Rohde, M., Nielsen, A. L., Johansen, J., Sørensen,
J. A., Nguyen, N., Diaz, A., Nielsen, M. K., Asmussen, J. T.,
Christiansen, J. M., Gerke, O., Thomassen, A., Alavi, A.,
Høilund-Carlsen, P. F., & Godballe, C. (2017). Head-toHead Comparison of Chest X-Ray/Head and Neck MRI, Chest
CT/Head and Neck MRI, and 18F-FDG PET/CT for Detection
of Distant Metastases and Synchronous Cancer in Oral,
Pharyngeal, and Laryngeal Cancer. Journal of nuclear medicine
: official publication, Society of Nuclear Medicine, 58(12),
1919–1924. https://doi.org/10.2967/jnumed.117.189704.
[2] 萧 毅, 郭 佑 民, 刘 士 远 . 医 学 影 像 在 新 型 冠
状 病 毒 肺 炎 诊 治 中 的 作 用 及 思 考 [J]. 中 华 放 射 学 杂
志 ,2020,54(4):266-268. DOI:10.3760/cma.j.cn112149-
20200208-00114.
[3]Yang, X.; He, X.; Zhao, J.; Zhang, Y.; Zhang, S.; Xie,
P. COVID-CT-Dataset: A CT Scan Dataset about COVID-19
2020. [arXiv:cs.LG/2003.13865].
[4]Dritsas, E., & Trigka, M. (2022). Lung Cancer Risk
Prediction with Machine Learning Models. Big Data and
Cognitive Computing, 6(4), 139. https://doi.org/10.3390/
bdcc6040139.
[5]S.k., L., Mohanty, S. N., K., S., N., A., & Ramirez, G.
(2019). Optimal deep learning model for classification of lung
cancer on CT images. Future Generation Computer Systems,
92, 374–382. doi:10.1016/j.future.2018.10.009.
[6]Arulananth, T.S., Balaji, L., Baskar, M. et al. PCA
Based Dimensional Data Reduction and Segmentation for
DICOM Images. Neural Process Lett 55, 3–17 (2023). https://
doi.org/10.1007/s11063-020-10391-9.
[7]Chen, C. H., Chang, C. K., Tu, C. Y., Liao, W. C.,
Wu, B. R., Chou, K. T., Chiou, Y. R., Yang, S. N., Zhang,
G., & Huang, T. C. (2018). Radiomic features analysis in
computed tomography images of lung nodule classification.
PloS one, 13(2), e0192002. https://doi.org/10.1371/journal.
pone.0192002.
[8]Hancock, M. C., & Magnan, J. F. (2016). Lung nodule
malignancy classification using only radiologist-quantified
image features as inputs to statistical learning algorithms:
probing the Lung Image Database Consortium dataset with
two statistical learning methods. Journal of medical imaging
(Bellingham, Wash.), 3(4), 044504. https://doi.org/10.1117/1.
JMI.3.4.044504.
[9]Guan, X., Yao, L., Tan, Y. et al. Quantitative and
semi-quantitative CT assessments of lung lesion burden in
COVID-19 pneumonia. Sci Rep 11, 5148 (2021). https://doi.
org/10.1038/s41598-021-84561-7.
[10]Shen, C., Yu, N., Cai, S., Zhou, J., Sheng, J., Liu, K.,
Zhou, H., Guo, Y., & Niu, G. (2020). Quantitative computed
tomography analysis for stratifying the severity of Coronavirus
Disease 2019. Journal of pharmaceutical analysis, 10(2),
123–129. https://doi.org/10.1016/j.jpha.2020.03.004.
Refbacks
- 当前没有refback。