人工智能放射组学在胰腺癌的应用进展

陶 永平, 王海 久*
青海大学附属医院肝胆胰外科;青海省包虫病研究重点实验室

摘要


胰腺癌是一种恶性程度极高的消化系统肿瘤,由于其早期诊断困难,预后较差。近十年来,人工智能(AI)
技术在临床医学领域得到了快速发展,带来了高效的数据处理和准确的模型构建等优势。基于人工智能的放射组学
在胰腺癌患者的临床诊疗中发挥着越来越重要的作用,为诊断提供了新的技术保障。在这篇综述中,我们评估了人
工智能放射组学在胰腺癌诊断中的现状,包括其诊断和生存预后。此外,我们还讨论了AI放射组学在胰腺癌中的应
用所面临的挑战和未来的前景。

关键词


胰腺癌;人工智能;诊断;预后

全文:

PDF


参考


[1]SIEGEL R L, MILLER K D, JEMAL A. Cancer

statistics, 2020 [J]. CA Cancer J Clin, 2020, 70(1): 7-30.

[2]杨刚,邱江东,张太平.可切除胰腺癌的规范治

疗与进展[J].临床外科杂志,2022,30(7):605-8.

[3]The global, regional, and national burden of

pancreatic cancer and its attributable risk factors in 195

countries and territories, 1990-2017: a systematic analysis

for the Global Burden of Disease Study 2017 [J]. Lancet

Gastroenterol Hepatol, 2019, 4(12): 934-47.

[4]BRAY F, FERLAY J, SOERJOMATARAM I, et

al. Global cancer statistics 2018: GLOBOCAN estimates of

incidence and mortality worldwide for 36 cancers in 185

countries [J]. CA Cancer J Clin, 2018, 68(6): 394-424.[5]CANTO M I, HRUBAN R H, FISHMAN E K, et

al. Frequent detection of pancreatic lesions in asymptomatic

high-risk individuals [J]. Gastroenterology, 2012, 142(4):

796-804; quiz e14-5.

[6]MOLLBERG N, RAHBARI N N, KOCH M, et

al. Arterial resection during pancreatectomy for pancreatic

cancer: a systematic review and meta-analysis [J]. Ann Surg,

2011, 254(6): 882-93.

[7]MIZRAHI J D, SURANA R, VALLE J W,

SHROFF R T. Pancreatic cancer [J]. Lancet, 2020,

395(10242): 2008-20.

[8]MILLIKAN K W, DEZIEL D J, SILVERSTEIN

J C, et al. Prognostic factors associated with resectable

adenocarcinoma of the head of the pancreas [J]. Am Surg,

1999, 65(7): 618-23; discussion 23-4.

[9]OKASHA H, ELKHOLY S, EL-SAYED R, et

al. Real time endoscopic ultrasound elastography and strain

ratio in the diagnosis of solid pancreatic lesions [J]. World J

Gastroenterol, 2017, 23(32): 5962-8.

[10]CONROY T, HAMMEL P, HEBBAR M, et al.

FOLFIRINOX or Gemcitabine as Adjuvant Therapy for

Pancreatic Cancer [J]. N Engl J Med, 2018, 379(25): 2395-406.

[11]NEOPTOLEMOS J P, PALMER D H, GHANEH P,

et al. Comparison of adjuvant gemcitabine and capecitabine with

gemcitabine monotherapy in patients with resected pancreatic

cancer (ESPAC-4): a multicentre, open-label, randomised,

phase 3 trial [J]. Lancet, 2017, 389(10073): 1011-24.

[12]MAITRA A, TOPOL E J. Early detection of

pancreatic cancer and AI risk partitioning [J]. Lancet, 2024,

403(10435): 1438.

[13]PATEL H, ZANOS T, HEWITT D B. Deep

Learning Applications in Pancreatic Cancer [J]. Cancers, 2024,

16(2).

[14]ZHAO G, CHEN X, ZHU M, et al. Exploring

the application and future outlook of Artificial intelligence in

pancreatic cancer [J]. Frontiers in Oncology, 2024.

[15]JIANG J, LI C, LU J, et al. Using interpretable deep

learning radiomics model to diagnose and predict progression

of early AD disease spectrum: a preliminary [(18)F]FDG PET

study [J]. Eur Radiol, 2024.

[16]CHEN Y, QI Y, HU Y, et al. Integrated cerebellar

radiomic-network model for predicting mild cognitive

impairment in Alzheimer’s disease [J]. Alzheimers Dement,

2024.

[17]PEREZ-LOPEZ R, LALEH N G, MAHMOOD

F, KATHER J N. A guide to artificial intelligence for cancer

researchers [J]. Nature reviews Cancer, 2024, (6): 24.

[18]FERETZAKIS G, JULIEBø- J O N E S P ,

TSATURYAN A, et al. Emerging Trends in AI and

Radiomics for Bladder, Kidney, and Prostate Cancer: A

Critical Review [J]. Cancers (Basel), 2024, 16(4).

[19]LIU K L, WU T, CHEN P T, et al. Deep learning

to distinguish pancreatic cancer tissue from non-cancerous

pancreatic tissue: a retrospective study with cross-racial external

validation [J]. Lancet Digit Health, 2020, 2(6): e303-e13.

[20]CHEN P T, WU T, WANG P, et al. Pancreatic

Cancer Detection on CT Scans with Deep Learning: A

Nationwide Population-based Study [J]. Radiology, 2023,

306(1): 172-82.

[21]CAO K, XIA Y, YAO J, et al. Large-scale

pancreatic cancer detection via non-contrast CT and deep

learning [J]. Nat Med, 2023, 29(12): 3033-43.

[22]PARK S, SHAM J G, KAWAMOTO S, et al. CT

Radiomics-Based Preoperative Survival Prediction in Patients

With Pancreatic Ductal Adenocarcinoma [J]. AJR Am J

Roentgenol, 2021, 217(5): 1104-12.

[23]YAO J, CAO K, HOU Y, et al. Deep Learning

for Fully Automated Prediction of Overall Survival in

Patients Undergoing Resection for Pancreatic Cancer: A

Retrospective Multicenter Study [J]. Ann Surg, 2023, 278(1):

e68-e79.

[24]GAO Y, CHENG S, ZHU L, et al. A systematic

review of prognosis predictive role of radiomics in pancreatic

cancer: heterogeneity markers or statistical tricks? [J]. Eur

Radiol, 2022, 32(12): 8443-52.

[25]LEE J H, SHIN J, MIN J H, et al. Preoperative

prediction of early recurrence in resectable pancreatic cancer

integrating clinical, radiologic, and CT radiomics features [J].

Cancer Imaging, 2024, 24(1): 6.

[26]ZAMBIRINIS C P, MIDYA A, CHAKRABORTY

J, et al. Recurrence After Resection of Pancreatic Cancer:

Can Radiomics Predict Patients at Greatest Risk of Liver

Metastasis? [J]. Ann Surg Oncol, 2022, 29(8): 4962-74.

[27]SONG C, WANG M, LUO Y, et al. Predicting

the recurrence risk of pancreatic neuroendocrine neoplasms

after radical resection using deep learning radiomics with

preoperative computed tomography images [J]. Ann Transl

Med, 2021, 9(10): 833.


Refbacks

  • 当前没有refback。