人工智能放射组学在胰腺癌的应用进展
摘要
技术在临床医学领域得到了快速发展,带来了高效的数据处理和准确的模型构建等优势。基于人工智能的放射组学
在胰腺癌患者的临床诊疗中发挥着越来越重要的作用,为诊断提供了新的技术保障。在这篇综述中,我们评估了人
工智能放射组学在胰腺癌诊断中的现状,包括其诊断和生存预后。此外,我们还讨论了AI放射组学在胰腺癌中的应
用所面临的挑战和未来的前景。
关键词
全文:
PDF参考
[1]SIEGEL R L, MILLER K D, JEMAL A. Cancer
statistics, 2020 [J]. CA Cancer J Clin, 2020, 70(1): 7-30.
[2]杨刚,邱江东,张太平.可切除胰腺癌的规范治
疗与进展[J].临床外科杂志,2022,30(7):605-8.
[3]The global, regional, and national burden of
pancreatic cancer and its attributable risk factors in 195
countries and territories, 1990-2017: a systematic analysis
for the Global Burden of Disease Study 2017 [J]. Lancet
Gastroenterol Hepatol, 2019, 4(12): 934-47.
[4]BRAY F, FERLAY J, SOERJOMATARAM I, et
al. Global cancer statistics 2018: GLOBOCAN estimates of
incidence and mortality worldwide for 36 cancers in 185
countries [J]. CA Cancer J Clin, 2018, 68(6): 394-424.[5]CANTO M I, HRUBAN R H, FISHMAN E K, et
al. Frequent detection of pancreatic lesions in asymptomatic
high-risk individuals [J]. Gastroenterology, 2012, 142(4):
796-804; quiz e14-5.
[6]MOLLBERG N, RAHBARI N N, KOCH M, et
al. Arterial resection during pancreatectomy for pancreatic
cancer: a systematic review and meta-analysis [J]. Ann Surg,
2011, 254(6): 882-93.
[7]MIZRAHI J D, SURANA R, VALLE J W,
SHROFF R T. Pancreatic cancer [J]. Lancet, 2020,
395(10242): 2008-20.
[8]MILLIKAN K W, DEZIEL D J, SILVERSTEIN
J C, et al. Prognostic factors associated with resectable
adenocarcinoma of the head of the pancreas [J]. Am Surg,
1999, 65(7): 618-23; discussion 23-4.
[9]OKASHA H, ELKHOLY S, EL-SAYED R, et
al. Real time endoscopic ultrasound elastography and strain
ratio in the diagnosis of solid pancreatic lesions [J]. World J
Gastroenterol, 2017, 23(32): 5962-8.
[10]CONROY T, HAMMEL P, HEBBAR M, et al.
FOLFIRINOX or Gemcitabine as Adjuvant Therapy for
Pancreatic Cancer [J]. N Engl J Med, 2018, 379(25): 2395-406.
[11]NEOPTOLEMOS J P, PALMER D H, GHANEH P,
et al. Comparison of adjuvant gemcitabine and capecitabine with
gemcitabine monotherapy in patients with resected pancreatic
cancer (ESPAC-4): a multicentre, open-label, randomised,
phase 3 trial [J]. Lancet, 2017, 389(10073): 1011-24.
[12]MAITRA A, TOPOL E J. Early detection of
pancreatic cancer and AI risk partitioning [J]. Lancet, 2024,
403(10435): 1438.
[13]PATEL H, ZANOS T, HEWITT D B. Deep
Learning Applications in Pancreatic Cancer [J]. Cancers, 2024,
16(2).
[14]ZHAO G, CHEN X, ZHU M, et al. Exploring
the application and future outlook of Artificial intelligence in
pancreatic cancer [J]. Frontiers in Oncology, 2024.
[15]JIANG J, LI C, LU J, et al. Using interpretable deep
learning radiomics model to diagnose and predict progression
of early AD disease spectrum: a preliminary [(18)F]FDG PET
study [J]. Eur Radiol, 2024.
[16]CHEN Y, QI Y, HU Y, et al. Integrated cerebellar
radiomic-network model for predicting mild cognitive
impairment in Alzheimer’s disease [J]. Alzheimers Dement,
2024.
[17]PEREZ-LOPEZ R, LALEH N G, MAHMOOD
F, KATHER J N. A guide to artificial intelligence for cancer
researchers [J]. Nature reviews Cancer, 2024, (6): 24.
[18]FERETZAKIS G, JULIEBø- J O N E S P ,
TSATURYAN A, et al. Emerging Trends in AI and
Radiomics for Bladder, Kidney, and Prostate Cancer: A
Critical Review [J]. Cancers (Basel), 2024, 16(4).
[19]LIU K L, WU T, CHEN P T, et al. Deep learning
to distinguish pancreatic cancer tissue from non-cancerous
pancreatic tissue: a retrospective study with cross-racial external
validation [J]. Lancet Digit Health, 2020, 2(6): e303-e13.
[20]CHEN P T, WU T, WANG P, et al. Pancreatic
Cancer Detection on CT Scans with Deep Learning: A
Nationwide Population-based Study [J]. Radiology, 2023,
306(1): 172-82.
[21]CAO K, XIA Y, YAO J, et al. Large-scale
pancreatic cancer detection via non-contrast CT and deep
learning [J]. Nat Med, 2023, 29(12): 3033-43.
[22]PARK S, SHAM J G, KAWAMOTO S, et al. CT
Radiomics-Based Preoperative Survival Prediction in Patients
With Pancreatic Ductal Adenocarcinoma [J]. AJR Am J
Roentgenol, 2021, 217(5): 1104-12.
[23]YAO J, CAO K, HOU Y, et al. Deep Learning
for Fully Automated Prediction of Overall Survival in
Patients Undergoing Resection for Pancreatic Cancer: A
Retrospective Multicenter Study [J]. Ann Surg, 2023, 278(1):
e68-e79.
[24]GAO Y, CHENG S, ZHU L, et al. A systematic
review of prognosis predictive role of radiomics in pancreatic
cancer: heterogeneity markers or statistical tricks? [J]. Eur
Radiol, 2022, 32(12): 8443-52.
[25]LEE J H, SHIN J, MIN J H, et al. Preoperative
prediction of early recurrence in resectable pancreatic cancer
integrating clinical, radiologic, and CT radiomics features [J].
Cancer Imaging, 2024, 24(1): 6.
[26]ZAMBIRINIS C P, MIDYA A, CHAKRABORTY
J, et al. Recurrence After Resection of Pancreatic Cancer:
Can Radiomics Predict Patients at Greatest Risk of Liver
Metastasis? [J]. Ann Surg Oncol, 2022, 29(8): 4962-74.
[27]SONG C, WANG M, LUO Y, et al. Predicting
the recurrence risk of pancreatic neuroendocrine neoplasms
after radical resection using deep learning radiomics with
preoperative computed tomography images [J]. Ann Transl
Med, 2021, 9(10): 833.
Refbacks
- 当前没有refback。