基于网络药理学探究沙棘活性成分抗衰老机制

李 田田, 岳 真好, 蒋 帅, 郝 盼盼, 胡佳 燕*
巴中职业技术学院

摘要


目的:采用网络药理学方法研究沙棘主要活性成分抗衰老的作用机制。方法:在TCMSPW中获得沙棘的
活性成分。PharmMapper服务器预测沙棘主要活性成分的作用靶点。衰老的相关靶标来自GeneCards和OMIM数据
库。两者的共同靶点即为沙棘活性成分抗衰老的作用靶点。STRING数据库构建靶点蛋白相互作用(PPI)网络,并
进行GO功能富集和KEGG通路注释。Cytoscape3.10.3软件构建“成分-靶点-通路”网络图。GOLD 5.3.0软件对沙
棘活性成分与主要抗衰老靶点进行分子对接。结果:获得沙棘活性成分共28个,作用靶点包括IGF1R、NOS3、F2、
SOD2、SHBG等26个。GO结果显示沙棘主要参与PI3K/Akt信号转导正向调控、细胞群体增殖正向调控等生物过程。
KEGG通路富集主要涉及FoxO、AGE-RAGE、PI3K-AKT等信号通路。分子对接验证表明沙棘主要活性成分与其关
键抗衰老靶点结合力高。结论:沙棘的活性成分通过体内多个靶点及多条信号通路发挥抗衰老的作用。

关键词


衰老;沙棘;网络药理学;靶点;作用机制

全文:

PDF


参考


[1]Almanzar N, Antony J, Baghel AS, et al. A single‐cell

transcriptomic Atlas characterizes ageing tissues in the mouse.

Nature. 2020;583(7817):590‐595.

[2]Wang K, Xu Z, Liao X. Bioactive compounds, health

benefits and functional food products of sea buckthorn: a

review. Crit Rev Food Sci Nutr. 2022;62(24):6761-6782.

[3]赵二劳,展俊岭,范建凤.沙棘黄酮抗衰老作用

研究进展[J].基因组学与应用生物学,2020,39(10):

4882-4887.

[4]沈晓溪,张一鸣,赵梓伊,等.沙棘粕槲皮素体

外抗氧化及对衰老模型小鼠保护作用的研究[J].食品工业

科技,2021,42(20):348-354.

[5]包晓玮,李建瑛,任薇,等.沙棘多糖对D半乳

糖致衰老小鼠的抗氧化作用[J].食品工业科技,2020,41

(04):293-297+306.

[6]Li X, Xiang L, Lin Y, et al. Computational Analysis

Illustrates the Mechanism of Qingfei Paidu Decoction in

Blocking the Transition of COVID-19 Patients from Mild to

Severe Stage. Curr Gene Ther. 2022;22(3):277-289.

[7] WANG Z, WANG W Q, ZHU C L, et al.

Evaluation of antioxidative and neuroprotective activities of

total flavonoids from sea buckthorn(Hippophae rhamnoides L.)

[J]. Front Nutr, 2022, 9:861097.

[8] SINGH D, JAYASHANKAR B, MISHRA K

P, et al. Adjuvant activity of ethanol extract of Hippophae

rhamnoides leaves with inactivated rabies virus antigen[J].

Pharm Biol, 2018, 56(1):25-31.

[9]张佳婵,王昌涛,刘瑶,等.沙棘粕醇提取物

对秀丽隐杆线虫的抗衰老功效及其机制[J].食品科学,

2017,38(23):141-148.

[10]崔云华,沈文宾,吴焕淦,等.艾灸对亚急性衰

老 大 鼠 胸 腺CD4+T细 胞IL-2、IL-2Rα、NF-κB和

I-κB蛋白表达的影响[J].世界中医药,2017,12(05):

1094-1100+1104.可

[11]Baxter RC. Signaling Pathways of the Insulinlike Growth Factor Binding Proteins. Endocr Rev.

2023;44(5):753-778.

[12] Bokov AF, Garg N, Ikeno Y, et al. Does reduced

IGF-1R signaling in Igf1r+/- mice alter aging?. PLoS One.

2011;6(11):e26891.

[13]Xu M, Tchkonia T, Ding H, et al. JAK inhibition

alleviates the cellular senescence-associated secretory

phenotype and frailty in old age. Proc Natl Acad Sci U S A.

2015;112(46):E6301-E6310.

[14]兰文,陈志钧,周璐.MicroRNA-34a通过上调

Cdc42和Rac1促进人晶状体上皮细胞衰老和凋亡[J].国际

眼科杂志,2020,20(05):768-772.

[15]Rasa SMM, Annunziata F, Krepelova A, et al.

Inflammaging is driven by upregulation of innate immune

receptors and systemic interferon signaling and is ameliorated

by dietary restriction. Cell Rep. 2022;39(13):111017.

[16]孙文平,伍志伟,薛娜.归芪定年方通过调节

JAK2/STAT通路活性延缓小鼠肾系膜细胞衰老[J].中国

实验方剂学杂志,2021,27(12):67-73.

[17]Lajqi T, Stojiljkovic M, Wetzker R. Toxininduced hormesis may restrain aging. Biogerontology. 2019

Aug;20(4):571-581.

[18]Martins R, Lithgow GJ, Link W. Long live FOXO:

unraveling the role of FOXO proteins in aging and longevity.

Aging Cell. 2016 Apr;15(2):196-207.

[19]Bhadra M, Howell P, Dutta S, et al. Mair WB.

Alternative splicing in aging and longevity. Hum Genet. 2020

Mar;139(3):357-369.

[20]梁超,杨暑晨,许言午,等.基于AGEs-RAGE

轴探讨左归丸有效成分对衰老骨髓间充质干细胞的影响

[J].时珍国医国药,2024,35(05):1092-1096.

[21]Guo Y, Jia X, Cui Y, et al. Sirt3-mediated

mitophagy regulates AGEs-induced BMSCs senescence and

senile osteoporosis. Redox Biol. 2021;41:101915.


Refbacks

  • 当前没有refback。