放疗联合免疫治疗——晚期胸腺瘤发生远隔效应1例分析

徐 文悦, 丁 梦琦, 张 西志
扬州大学附属苏北人民医院肿瘤科

摘要


远隔效应(abscopal effect,AE)是一种局部照射一处肿瘤而远离照射部位的病灶缩小或消失的现象,但其
在临床上非常少见且不可预测。现报告1例晚期胸腺瘤患者经大分割放疗联合免疫治疗后发生远隔效应的病例,回
顾分析相关文献探讨远隔效应发生的机制以及放疗对免疫的调节作用。

关键词


远隔效应;病例报告;放疗;免疫治疗

全文:

PDF


参考


[1]Mole RH . Whole body irradiation; radiobiology or

medicine ? [J]. Br J Radiol, 1953, 26 (305): 234 -241.

[2]Dagoglu N, Karaman S, Caglar HB, Oral EN.

Abscopal Effect of Radiotherapy in the Immunotherapy Era:

Systematic Review of Reported Cases. Cureus. 2019 Feb

20;11(2):e4103.

[3]中国医师协会肿瘤多学科诊疗专业委员会.中国

胸腺上皮肿瘤临床诊疗指南(2021版)[J].中华肿瘤杂志,

2021,43(4):395-404. DOI:10.3760/cma.j.cn112152-

20210313-00226.

[4]Obeid M, Tesniere A, Ghiringhelli F, et al.

Calreticulin exposure dictates the immunogenicity of cancer

cell death[J]. Nature medicine, 2007, 13(1): 54-61.

[5]Grass G D, Krishna N, Kim S. The immune

mechanisms of abscopal effect in radiation therapy[J]. Current

problems in cancer, 2016, 40(1): 10-24.

[6]Carozza J A, Böhnert V, Nguyen K C, et al. Extracellular

cGAMP is a cancer-cell-produced immunotransmitter involved

in radiation-induced anticancer immunity[J]. Nature cancer,

2020, 1(2): 184-196.

[7]Marshak-Rothstein A. Toll-like receptors in systemic

autoimmune disease[J]. Nature Reviews Immunology, 2006,

6(11): 823-835.

[8]Wu C Y, Yang L H, Yang H Y, et al. Enhanced

cancer radiotherapy through immunosuppressive stromal cell

destruction in tumors[J]. Clinical Cancer Research, 2014,

20(3): 644-657.

[9]Dhatchinamoorthy K, Colbert J D, Rock K L.

Cancer immune evasion through loss of MHC class I antigen

presentation[J]. Frontiers in immunology, 2021, 12: 636568.

[10]Jin W J, Zangl L M, Hyun M, et al. ATM inhibition

augments type I interferon response and antitumor T-cell

immunity when combined with radiation therapy in murine

tumor models[J]. Journal for Immunotherapy of Cancer, 2023,

11(9).

[11]高玉婷,李鹏飞,马国榕,等.辐射诱导远隔

效应机制的研究进展[J].中华放射肿瘤学杂志,2023,

32(9):861-865. DOI:10.3760/cma.j.cn113030-

20220822-00285.

[12]Long Y, Guo J, Chen J, et al. GPR162 activates

STING dependent DNA damage pathway as a novel tumor

suppressor and radiation sensitizer[J]. Signal Transduction and

Targeted Therapy, 2023, 8(1): 48.[13]Lugade A A, Sorensen E W, Gerber S A, et al.

Radiation-induced IFN-γ production within the tumor

microenvironment influences antitumor immunity[J]. The

Journal of Immunology, 2008, 180(5): 3132-3139.

[14]Falzone N, Ackerman N L, de la Fuente Rosales

L, et al. Dosimetric evaluation of radionuclides for VCAM-

1-targeted radionuclide therapy of early brain metastases[J].

Theranostics, 2018, 8(1): 292.

[15]Morvan M G, Lanier L L. NK cells and cancer: you

can teach innate cells new tricks[J]. Nature Reviews Cancer,

2016, 16(1): 7-19.

[16]Barcellos-Hoff M H, Cucinotta F A. New tricks for

an old fox: impact of TGFβ on the DNA damage response

and genomic stability[J]. Science signaling, 2014, 7(341): re5-

re5.

[17]Weichselbaum R R, Liang H, Deng L, et al.

Radiotherapy and immunotherapy: a beneficial liaison?[J].

Nature reviews Clinical oncology, 2017, 14(6): 365-379.

[18]Facciabene A, Motz G T, Coukos G. T-regulatory

cells: key players in tumor immune escape and angiogenesis[J].

Cancer research, 2012, 72(9): 2162-2171.

[19]Klug F, Prakash H, Huber P E, et al. Lowdose irradiation programs macrophage differentiation to an

iNOS+/M1 phenotype that orchestrates effective T cell

immunotherapy[J]. Cancer cell, 2013, 24(5): 589-602.

[20]Wing K, Onishi Y, Prieto-Martin P, et al. CTLA-4

control over Foxp3+ regulatory T cell function[J]. Science,

2008, 322(5899): 271-275.

[21]Wu Y, Song Y, Wang R, et al. Molecular

mechanisms of tumor resistance to radiotherapy[J]. Molecular

Cancer, 2023, 22(1): 96.

[22]Twyman-Saint Victor C, Rech A J, Maity A, et

al. Radiation and dual checkpoint blockade activate nonredundant immune mechanisms in cancer[J]. Nature, 2015,

520(7547): 373-377.

[23]王娟,陈大卫,于金明.放射远隔效应的量变到

质变——布拉格治疗[J].中华肿瘤防治杂志,2022,29

(18):1314-1316.


Refbacks

  • 当前没有refback。