炎症与胰岛素抵抗:肥胖和肌肉减少症的纽带
摘要
肪-肌肉交互机制,系统阐述内脏脂肪堆积驱动的慢性炎症及成胰岛素抵抗的核心病理关联。研究表明,肥胖状态
下脂肪组织分泌的促炎因子通过诱导胰岛素抵抗与抑制蛋白合成加速肌肉流失,而骨骼肌质量下降进一步加重脂质
异位沉积,形成恶性循环本综述为肥胖相关肌肉退行性疾病的防治提供机制-临床转化新视角,助力实现代谢健康
老龄化目标。
关键词
全文:
PDF参考
[1]Safiri S, Grieger JA, Ghaffari Jolfayi A, et al. Burden
of diseases attributable to excess body weight in 204 countries
and territories, 1990-2019. Nutr J. 2025;24(1):23.
[2]Lopez-Pedrosa JM, Camprubi-Robles M, GuzmanRolo G, et al. The Vicious Cycle of Type 2 Diabetes Mellitus
and Skeletal Muscle Atrophy: Clinical, Biochemical, and
Nutritional Bases. Nutrients. 2024;16(1):172
[3]Petermann-Rocha F, Balntzi V, Gray SR, et
al. Global prevalence of sarcopenia and severe sarcopenia: a
systematic review and meta-analysis. J Cachexia Sarcopenia
Muscle. 2022;13(1):86-99.
[4]Zeng Q, Li N, Pan XF, et al. Clinical management
and treatment of obesity in China. Lancet Diabetes
Endocrinol. 2021;9(6):393-405.
[5]Ren X, Zhang X, He Q, et al. Prevalence of
sarcopenia in Chinese community-dwelling elderly: a
systematic review. BMC Public Health. 2022;22:1702.
[6]Khanal P, Williams AG, He L, et al. Sarcopenia,
Obesity, and Sarcopenic Obesity: Relationship with Skeletal
Muscle Phenotypes and Single Nucleotide Polymorphisms. J
Clin Med. 2021;10(21):4933. doi:10.3390/jcm1021493
[7]Wunderle C, Stumpf F, Schuetz P. Inflammation and
response to nutrition interventions. JPEN J Parenter Enteral
Nutr. 2024;48(1):27-36.
[8]Wu Y, Yao X, Shi X, et al. Myeloma extracellular
vesicle-derived RAGE increases inflammatory responses and
myotube atrophy in multiple myeloma through activation of
the TLR4/NF-κB p65 pathway. Apoptosis. 2024;29(5-
6):849-864. doi:10.1007/s10495-023-01920-7
[9]Cavaliere G, Cimmino F, Trinchese G, et al. From
Obesity-Induced Low-Grade Inflammation to Lipotoxicity
and Mitochondrial Dysfunction: Altered Multi-Crosstalk
between Adipose Tissue and Metabolically Active Organs. An
tioxidants. 2023;12(6):1172.
[10]Aisike G, Kuerbanjiang M, Muheyati D, et
al. Correlation analysis of obesity phenotypes with leptin and
adiponectin. Sci Rep. 2023;13(1):17718.
[11]Yang S, Yang G, Wu H, et al. IL-6 Deficiency
Attenuates Skeletal Muscle Atrophy by Inhibiting Mitochondrial
ROS Production through the Upregulation of PGC-1α inSeptic Mice. Oxid Med Cell Longev. 2022; 2022: 9148246.
[12]Shen KC, Collins KH, Ferey JLA, et al. Excess
intramyocellular lipid in metabolically abnormal
obesity. Diabetes. 2025;73(8):1266-1277.
[13]Huang H, Zheng X, Wen X, et al. Visceral fat
correlates with insulin secretion and sensitivity independent
of BMI and subcutaneous fat in Chinese with type 2
diabetes. Front Endocrinol. 2023;14:1144834.
[14]Cao C, Koh HE, Van Vliet S, et al. Increased plasma
fatty acid clearance, not fatty acid concentration, is associated
with muscle insulin resistance in people with obesity. Metabol
ism. 2022;132:155216. doi:10.1016/j.metabol.2022.155216
[15]蔡永东, 黄彩华. 2型糖尿病性肌少症及其运动
干预研究进展. 福建体育科技. 2023;(5):32-37.
[16]Carvalho LP, Basso-Vanelli RP, Di ThommazoLuporini L, et al. Myostatin and adipokines: The
role of the metabolically unhealthy obese phenotype
in muscle function and aerobic capacity in young
adults. Cytokine. 2018;107:118-124.
[17]Liu ZJ, Zhu CF. Causal relationship between
insulin resistance and sarcopenia. Diabetol Metab
Syndr. 2023;15(1):46.
[18]Ding Q, Sun B, Wang M, et al. N-acetylcysteine
alleviates oxidative stress and apoptosis and prevents skeletal
muscle atrophy in type 1 diabetes mellitus through the
NRF2/HO-1 pathway. Life Sci. 2023;329:121975.
[19]Yang L, Liu D, Jiang S, et al. SIRT1 signaling
pathways in sarcopenia: Novel mechanisms and potential
therapeutic targets. Biomed Pharmacother. 2024;177:116917.
Refbacks
- 当前没有refback。