基于序列图像模型的肝癌药效预测研究
摘要
的毒性。通过分析序列图像,使用Z-stack聚焦算法来叠加在不同时间段拍摄的同一细胞的图像,将处理后的图像数
据输入到自研的Stvit,Vivit,Vilt,Resnet3D等模型,对比在不同预训练模型上的学习效果及药物预测的推理测试,
旨在构建一个能够准确预测药物毒性的模型。
关键词
全文:
PDF参考
[1]Zhang, L., Tan, J., Han, D., & Zhu, H. (2020).
Deep learning for drug discovery and cancer research:
Recent advances and future directions. Journal of Biomedical
Informatics, 112, 103598.
[2]Clevers, H., & Tuveson, D. A. (2019). Organoids in
cancer research: From modeling to drug screening. Nature
Reviews Cancer, 19(2), 65-78.
[3]Li, Y., Zhang, X., & Chen, Y. (2021). Multimodal
deep learning for biomedical data fusion: A review. IEEE
Transactions on Neural Networks and Learning Systems,
32(6), 1234-1248.
[4]Chalasani, N., & Björnsson, E. (2019). Drug-induced
liver injury: Mechanisms, biomarkers, and therapeutic
approaches.Hepatology, 70(1), 15-27.
[5]Drost, J., & Clevers, H. (2018). High-content
screening with organoids: A new era in drug discovery.Nature
Reviews Drug Discovery, 17(6), 407-420.
[6]Vaswani, A., Shazeer, N., & Parmar, N. (2021).
Transformer models for multimodal data fusion in healthcare.
Nature Machine Intelligence, 3(5), 401-410.
[7]Chen, H., Engkvist, O., & Wang, Y. (2020).
Applications of artificial intelligence in drug toxicity
prediction.Drug Discovery Today, 25(5), 817-825.
[8]Wang, Z., & Sun, Y. (2022). Integrating text
and image data for drug response prediction in cancer.
Bioinformatics, 38(8), 2201-2209.
Refbacks
- 当前没有refback。