肝癌诊疗新路径:人工智能技术的深度融合与实践探索

王 习鑫1, 冯 晓彬2, 吴广 斌*3
1、清华大学临床医学院(北京清华长庚医院)
2、北京清华长庚医院肝胆胰外科
3、青海大学临床医学院

摘要


肝细胞癌(HCC)是全球癌症致死的重要原因,其早期诊断与治疗面临重大挑战。传统影像学与血清标志物在敏感性和特异性上的局限性促使人工智能(AI)技术在肝癌诊疗中发挥革命性作用。本文综述了AI在肝癌早期影像诊断(CT、MRI)、数字病理学分析及治疗策略优化(手术规划、个性化治疗、药物研发)中的应用进展,并探讨其面临的挑战(数据质量、模型可解释性、伦理问题)。AI通过整合多模态数据提升诊断准确性、预测预后及优化治疗方案,而跨学科合作与多中心数据共享是突破技术瓶颈、实现临床转化的关键。未来需构建AI与医生协同的诊疗生态,推动肝癌精准医疗发展。

关键词


肝细胞癌;人工智能;早期诊断;影像组学;数字病理学;跨学科合作

全文:

PDF


参考


[1]杨嘉睿,江建新.《2024年欧洲肝病学会临床实践指南:肝细胞癌管理》摘译[J].临床肝胆病杂志,2025,41(02):234-239.

[2]Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263. doi:10.3322/caac.21834

[3]Bruix J, Sherman M: Management of hepatocellular carcinoma. Hepatology (Baltimore, Md) 2005,42(5):1208-1236.

[4]周程.硝苯地平对肝癌细胞Huh-7生长的抑制效应及自噬相关调控机制[D].桂林医学院,2022.DOI:10.27806/d.cnki.gglyx.2022.000035.

[5]谭妮,郑海平,欧超.肝癌根治术治疗原发性肝癌患者的术后生存率及预后影响因素分析[J].现代肿瘤医学,2019,27(5):826-829.

[6]MIN J H, LEE M W, PARK H S, et al. Interobserver Variability and Diagnostic Performance ofGadoxetic Acid-enhanced MRI for Predicting Microvascular Invasion in Hepatocellular Carcinoma[J]. Radiology, 2020, 297(3): 573-81.

[7]刘虹汝,张洪源,张紫栋,等.肝细胞癌中与m~6A相关的lncRNAs挖掘及DACH1在其预后的免疫特性[J].昆明理工大学学报(自然科学版),2024,49(5):119-132.

[8]肖文铉,赵珅,江一舟.肿瘤大数据与人工智能在肿瘤诊疗中的应用现状、挑战与未来展望[J].中国科学基金,2025,39(1):153-161.

[9]查文中,兰希,比确子拉.医院信息系统中的跨平台数据集成技术研究[J].信息与电脑(理论版),2024,36(18):66-68.

[10]吴阳,张万广.人工智能在肝癌精准诊疗中的研究进展[J].中国普通外科杂志,2025,34(01):33-39.

[11]甘枥元,郭超峰.人工智能深度学习技术在网络药理学领域的研究进展[J].医药前沿,2025,15(07):23-25.DOI:10.20235/j.issn.2095-1752.2025.07.006.

[12]陈德莲,江慧红.榄香烯联合介入治疗中晚期肝细胞癌患者的疗效分析[J].广州中医药大学学报,2016,33(1):27-30.

[13]曹富平.基于GEO数据库及生物信息学方法分析肝细胞癌差异基因[D].南昌大学,2023.DOI:10.27232/d.cnki.gnchu.2023.000288.

[14]杜明澍,钱玉鑫.体检超声及检验结果对早期发现无症状微小肝癌的临床诊断价值[J].影像研究与医学应用,2024,8(17):99-101+104.

[15]徐悦,吕涛,赵翊含,等.18F-FDG PET/CT动态显像诊断原发性肝癌的价值[J].现代肿瘤医学,2023,31(19):3653-3657.

[16]董平,李永刚,林佳阳.多排螺旋CT与MRI增强扫描原发性肝癌病灶影像学表现和诊断效能38例观察[J].现代医用影像学,2022,31(08):1487-1489+1492.

[17]黄国兵.基于术前增强CT三期图像构建影像组学模型预测肝细胞癌术后早期复发的研究[D].南方医科大学,2023.DOI:10.27003/d.cnki.gojyu.2023.001393.

[18]Xu Y, Zhou C, He X, et al. Deep learning-assisted LI-RADS grading and distinguishing hepatocellular carcinoma (HCC) from non-HCC based on multiphase CT: a two-center study. Eur Radiol. 2023;33(12):8879-8888. doi:10.1007/s00330-023-09857-w

[19]Shin H, Hur MH, Song BG, et al. AI model using CT-based imaging biomarkers to predict hepatocellular carcinoma in patients with chronic hepatitis B. J Hepatol. Published online December 20, 2024. doi:10.1016/j.jhep.2024.12.029

[20]Li M, Fan Y, You H, et al. Dual-Energy CT Deep Learning Radiomics to Predict Macrotrabecular-Massive Hepatocellular Carcinoma. Radiology. 2023;308(2):e230255. doi:10.1148/radiol.230255

[21]Guo L, Hao X, Chen L, et al. Early warning of hepatocellular carcinoma in cirrhotic patients by three-phase CT-based deep learning radiomics model: a retrospective, multicentre, cohort study. EClinicalMedicine. 2024;74:102718. Published 2024 Jul 5. doi:10.1016/j.eclinm.2024.102718

[22]Chen Y, Chen J, Zhang Y, et al. Preoperative Prediction of Cytokeratin 19 Expression for Hepatocellular Carcinoma with Deep Learning Radiomics Based on Gadoxetic Acid-Enhanced Magnetic Resonance Imaging. J Hepatocell Carcinoma. 2021;8:795-808. Published 2021 Jul 22. doi:10.2147/JHC.S313879

[23]He T, Fong JN, Moore LW, et al. An imageomics and multi-network based deep learning model for risk assessment of liver transplantation for hepatocellular cancer. Comput Med Imaging Graph. 2021;89:101894. doi:10.1016/j.compmedimag.2021.101894

[24]Cho Y, Han YE, Kim MJ, et al. Computer-aided hepatocellular carcinoma detection on the hepatobiliary phase of gadoxetic acid-enhanced magnetic resonance imaging using a convolutional neural network: Feasibility evaluation with multi-sequence data. Comput Methods Programs Biomed. 2022;225:107032. doi:10.1016/j.cmpb.2022.107032

[25]Chen Y, Zheng T, Chen Y, Song B. AI-Driven MRI for Microvascular Invasion Prediction in HCC: A Reply to the Interpretable and Open AI Models HCC. Liver Int. 2025;45(3):e70013. doi:10.1111/liv.70013

[26]Cheng N, Ren Y, Zhou J, et al. Deep Learning-Based Classification of Hepatocellular Nodular Lesions on Whole-Slide Histopathologic Images. Gastroenterology. 2022;162(7):1948-1961.e7. doi:10.1053/j.gastro.2022.02.025

[27]Laurent-Bellue A, Sadraoui A, Claude L, et al. Deep Learning Classification and Quantification of Pejorative and Nonpejorative Architectures in Resected Hepatocellular Carcinoma from Digital Histopathologic Images. Am J Pathol. 2024;194(9):1684-1700. doi:10.1016/j.ajpath.2024.05.007

[28]Fuster-Anglada C, Mauro E, Ferrer-Fàbrega J, et al. Histological predictors of aggressive recurrence of hepatocellular carcinoma after liver resection[J]. J Hepatol, 2024, 81(6): 995-1004.

[29]本报记者 沈慧.推动生活加速进入智能时代[N].经济日报.2024-8-26.

[30]Taha A, Ochs V, Kayhan LN, et al. Advancements ofartificial Intelligence in liver-associated diseases and surgery[J]. Medicina, 2022, 58(4):459.

[31]江宇,柳宗翰,程树群.人工智能在肝癌领域应用研究进展[J].中国实用外科杂志,2022,42(12):1428-1431.DOI:10.19538/j.cjps.issn1005-2208.2022.12.16

[32]Peters B S, Armijo P R, Krause C, et al. Review of emerging surgical robotic technology[J]. Surg Endosc, 2018, 32(4):1636-1655.

[33]唐雷,钟世镇.中国数字临床解剖学研究的发展历程[J].中国实用妇科与产科杂志,2025,41(01):23-25.DOI:10.19538/j.fk2025010106.

[34]Bari H, Wadhwani S, Dasari BVM. Role of artificial intelligence in hepatobiliary and pancreatic surgery[J]. World J Gastrointest Surg,2021, 13(1):7.

[35]Rho SY, Lee JG, Joo DJ, et al. Outcomes of Robotic Living Donor Right Hepatectomy From 52 Consecutive Cases: Comparison With Open and Laparoscopy-assisted Donor Hepatectomy. Ann Surg. 2022;275(2):e433-e442. doi:10.1097/SLA.0000000000004067

[36]Sasaki K, Ito M, Kobayashi S, et al. Automated surgical workflow identification by artificial intelligence in laparoscopic hepatectomy: Experimental research. Int J Surg. 2022;105:106856. doi:10.1016/j.ijsu.2022.106856

[37]Zhu P, Liao W, Zhang WG, et al. A Prospective Study Using Propensity Score Matching to Compare Long-term Survival Outcomes After Robotic-assisted, Laparoscopic, or Open Liver Resection for Patients With BCLC Stage 0-A Hepatocellular Carcinoma. Ann Surg. 2023;277(1):e103-e111. doi:10.1097/SLA.0000000000005380

[38]Qu Liu,Wanguang Zhang,Joseph J Zhao, et al. Propensity-score Matched and Coarsened-exact Matched Analysis Comparing Robotic and Laparoscopic Major Hepatectomies[J]. Annals of Surgery, 2023, 278(6): 969-975.

[39]Cipriani F, Aldrighetti L, Ratti F, et al. Impact of Liver Cirrhosis, Severity of Cirrhosis, and Portal Hypertension on the Difficulty and Outcomes of Laparoscopic and Robotic Major Liver Resections for Primary Liver Malignancies. Ann Surg Oncol. 2024;31(1):97-114. doi:10.1245/s10434-023-14376-5

[40]孙惠川,谢青,荚卫东,等.肝癌转化治疗中国专家共识(2021版)[J].中国实用外科杂志,2021,41(06):618-632.DOI:10.19538/j.cjps.issn1005-2208.2021.06.02.

[41]Hasin Y,Seldin M,Lusis A. Multi-omics approaches to disease[J], 2017.

[42]曹新玉,周旭,汪泉,等.癌症药物耐药潜在机制及预测方法[J].实用肿瘤学杂志,2023,37(06):491-495.

[43]王陵,冯浚铃,王文文,等.生物统计学在智慧医疗领域的应用进展[J/OL].空军军医大学学报,1-15[2025-03-18].http://kns.cnki.net/kcms/detail/61.1526.R.20250314.0958.002.html.

[44]管庆霞,罗煜婷,刘宇萌,等.人工智能在抗肿瘤药物研发中的应用与进展[J].中国现代应用药学,2023,40(23):3318-3323.DOI:10.13748/j.cnki.issn1007-7693.20230857.

[45]肖福燕.AD公司受试者招募服务营销策略优化研究[D].云南师范大学,2024.DOI:10.27459/d.cnki.gynfc.2024.001208.

[46]Qiang G,Hongwen Z,Liangqing D,et al. Integrated Proteogenomic Characterization of HBV-Related Hepatocellular Carcinoma[J], 2020.

[47]严律南,杨家印.人工智能肝癌临床决策支持系统的开发、验证和应用价值[J].中国普外基础与临床杂志,2020,27(09):1052-1056.

[48]Yang H, Cheng J, Zhuang H, et al. Pharmacogenomic profiling of intra-tumor heterogeneity using a large organoid biobank of liver cancer. Cancer Cell. 2024;42(4):535-551.e8. doi:10.1016/j.ccell.2024.03.004

[49]Gengjie Jia,Peiqi He,Tianli Dai, et al. Spatial immune scoring system predicts hepatocellular carcinoma recurrence[J]. Nature, 2025.


Refbacks

  • 当前没有refback。