脑小血管病的红细胞-血流动力学调控: 病理机制与靶向干预新策略

张 荣福, 孙 娟*
青海大学附属医院

摘要


脑小血管病(Cerebral Small Vessel Disease,CSVD)是一种累及脑内微小血管的慢性病变,以脑白质高信
号、腔隙性脑梗死及微出血为典型影像学特征,是血管性痴呆和缺血性卒中的主要病因,全球约7亿老年人受累,
中国老龄化加剧进一步加重其疾病负担。研究表明,红细胞特性(如变形能力降低、血红蛋白浓度异常)通过调节
颈动脉血流动力学(如血流速度、搏动指数)影响脑微循环,参与CSVD病理进程。慢性低灌注、氧化应激、炎症
级联反应及血脑屏障破坏是核心机制,其中红细胞膜刚性增加、TLR4/NF-κB通路激活、血脑屏障(Blood-Brain
Barrier,BBB)紧密连接蛋白降解等加剧神经元损伤和白质病变。当前临床干预聚焦于高血压控制、红细胞流变学
优化(如己酮可可碱改善变形能力)及血红蛋白浓度调控。未来需开发精准靶向治疗(如SIRT1/AMPK激活剂、
MMP-9抑制剂),结合多模态生物标志物(血流动力学参数+红细胞指数)和人工智能技术,推动早期筛查与个体
化治疗。转化医学需突破分子互作机制验证及多中心临床试验设计,以降低CSVD致残率和疾病负担。

关键词


脑小血管病;红细胞变形能力;颈动脉血流动力学;血脑屏障

全文:

PDF


参考


[1]Wardlaw J M, Smith C, Dichgans M. Small vessel

disease: mechanisms and clinical implications[J]. The Lancet

Neurology, 2019, 18(7): 684-696.

[2]Litak J, Mazurek M, Kulesza B, et al. Cerebral small

vessel disease[J]. International journal of molecular sciences,

2020, 21(24): 9729.

[3]张萌,杨小林.老年缺血性脑小血管病患者海马

代谢水平及发生认知功能障碍的危险因素分析[J].中华老

年心脑血管病杂志,2025,27(04):422-425.

[4]Hua M, Ma A J, Liu Z Q, et al. Arteriolosclerosis

CSVD: a common cause of dementia and stroke and its

association with cognitive function and total MRI burden[J].

Frontiers in Aging Neuroscience, 2023, 15: 1163349.

[5]Gao Y, Li D, Lin J, et al. Cerebral small vessel disease:

Pathological mechanisms and potential therapeutic targets[J].

Frontiers in aging neuroscience, 2022, 14: 961661.

[6]Wang Y, Liu Z. Research progress on the correlation

between MRI and impairment caused by cerebral small vessel

disease: A review[J]. Medicine, 2023, 102(40): e35389.

[7]Lv Y J, Zhang Q X, Li J W, et al. Correlation

between Carotid Blood Flow Velocity and Total Magnetic

Resonance Imaging Burden of Cerebral Small Vessel Disease

in Patients with Recent Small Subcortical Infarcts[J]. Current

Neurovascular Research, 2023, 20(5): 528-534.

[8]Liu Y, Dong Y H, Lyu P Y, et al. Hypertensioninduced cerebral small vessel disease leading to cognitive

impairment[J]. Chinese medical journal, 2018, 131(05):

615-619.

[9]Roh D J, Boehme A, Mamoon R, et al. Relationships

of hemoglobin concentration, ischemic lesions, and clinical

outcomes in patients with intracerebral hemorrhage[J]. Stroke,

2023, 54(4): 1021-1029.

[10]Ebrahimi S, Bagchi P. A computational study of red

blood cell deformability effect on hemodynamic alteration in

capillary vessel networks[J]. Scientific reports, 2022, 12(1): 4304.

[11]Recktenwald S M, Graessel K, Maurer F M, et

al. Red blood cell shape transitions and dynamics in timedependent capillary flows[J]. Biophysical Journal, 2022,

121(1): 23-36.

[12]Leo F, Suvorava T, Heuser S K, et al. Red blood

cell and endothelial eNOS independently regulate circulating

nitric oxide metabolites and blood pressure[J]. Circulation,

2021, 144(11): 870-889.

[13]Yalcin O, Ortiz D, Williams A T, et al. Perfusion

pressure and blood flow determine microvascular apparent

viscosity[J]. Experimental physiology, 2015, 100(8): 977-987.

[14]Nader E, Skinner S, Romana M, et al. Blood

rheology: key parameters, impact on blood flow, role in sickle

cell disease and effects of exercise[J]. Frontiers in physiology,

2019, 10: 1329.

[15]Weisel J W, Litvinov R I. Red blood cells: the

forgotten player in hemostasis and thrombosis[J]. Journal of

Thrombosis and Haemostasis, 2019, 17(2): 271-282.

[16]Plange-Rhule J, Kerry S M, Eastwood J B, et

al. Blood pressure and haematological indices in twelve

communities in Ashanti, Ghana[J]. International journal of

hypertension, 2018, 2018(1): 5952021.

[17]Richardson K J, Kuck L, Simmonds M J. Beyond

oxygen transport: active role of erythrocytes in the regulation

of blood flow[J]. American Journal of Physiology-Heart and

Circulatory Physiology, 2020, 319(4): H866-H872.

[18]Lu Y C, Chen P J, Lu S N, et al. Comparing CarotidArtery Velocities with Current ASCVD Risk Stratification:

A Novel Approach to Simpler Risk Assessment[J]. Journal of

Epidemiology and Global Health, 2024, 14(4): 1569-1578.

[ 1 9 ] Y a n g W , J u n g K H , P a r k K I , e t a l .

Pathophysiological link between carotid atherosclerosis and

cerebral white matter lesions[J]. Scientific Reports, 2025,

15(1): 6619.

[20]Chuang S Y, Cheng H M, Mitchell G F, et al.

Carotid flow velocities and blood pressures are independently

associated with cognitive function[J]. American Journal of

Hypertension, 2019, 32(3): 289-297.

[21]Hoving A M, De Vries E E, Mikhal J, et al. A

systematic review for the design of in vitro flow studies of the

carotid artery bifurcation[J]. Cardiovascular engineering and

technology, 2020, 11: 111-127.

[22]Ma X, Ji C. Remote ischemic conditioning: a

potential treatment for chronic cerebral hypoperfusion[J].

European Neurology, 2022, 85(4): 253-259.

[23]Cechetti F, Pagnussat A S, Worm P V, et al. Chronic

brain hypoperfusion causes early glial activation and neuronal

death, and subsequent long-term memory impairment[J].

Brain research bulletin, 2012, 87(1): 109-116.

[24]Anaya-Prado R, Canseco-Villegas A I, AnayaFernández R, et al. Role of nitric oxide in cerebral

ischemia/reperfusion injury: A biomolecular overview[J].

World Journal of Clinical Cases, 2025, 13(10): 101647.

[25]Üremiş N, Üremiş M M. Oxidative/Nitrosative

Stress, Apoptosis, and Redox Signaling: Key Players in

Neurodegenerative Diseases[J]. Journal of Biochemical and

Molecular Toxicology, 2025, 39(1): e70133.

[26]Ye Z, Liu R, Wang H, et al. Neuroprotective

potential for mitigating ischemia-reperfusion-induced

damage[J]. Neural Regeneration Research, 2025, 20(8):

2199-2217.

[27]Zhang Z, Zhao L, Zhou X, et al. Role of

inflammation, immunity, and oxidative stress in hypertension:

New insights and potential therapeutic targets[J]. Frontiers in

immunology, 2023, 13: 1098725.

[28]Bai T, Yu S, Feng J. Advances in the role of

endothelial cells in cerebral small vessel disease[J]. Frontiers in

neurology, 2022, 13: 861714.

[29]Zhao W, Liu Z, Wu J, et al. Potential targets of

microglia in the treatment of neurodegenerative diseases:

mechanism and therapeutic implications[J]. Neural

Regeneration Research, 10.4103.

[30]Shoamanesh A, Preis S R, Beiser A S, et al.

Inflammatory biomarkers, cerebral microbleeds, and small

vessel disease: Framingham Heart Study[J]. Neurology, 2015,

84(8): 825-832.

[31]Behl T, Makkar R, Sehgal A, et al. Current trends in

neurodegeneration: Cross talks between oxidative stress, cell

death, and inflammation[J]. International Journal of Molecular

Sciences, 2021, 22(14): 7432.

[32]Abdul-Muneer P M, Chandra N, Haorah J.

Interactions of oxidative stress and neurovascular inflammation

in the pathogenesis of traumatic brain injury[J]. Molecular

neurobiology, 2015, 51: 966-979.

[33]Kern K C, Zagzoug M S, Gottesman R F, et al.

Blood-brain barrier disruption and increased free water are

associated with worse cognitive performance in patients with

chronic cerebrovascular disease[J]. NeuroImage: Clinical,

2024, 44: 103706.

[34]Xu W Q, Bai Q, Dong Q, et al. Blood-Brain

Barrier Dysfunction and the Potential Mechanisms in Chronic

Cerebral Hypoperfusion Induced Cognitive Impairment[J].

Frontiers in cellular neuroscience, 2022, 16: 870674.

[35]Wu X, Ya J, Zhou D, et al. Pathogeneses and

imaging features of cerebral white matter lesions of vascular

origins[J]. Aging and disease, 2021, 12(8): 2031.

[36]Yang J, Li Q, Wang Z, et al. Multimodality MRI

assessment of grey and white matter injury and blood-brain

barrier disruption after intracerebral haemorrhage in mice[J].

Scientific reports, 2017, 7(1): 40358.

[37]Yu W, Li Y, Hu J, et al. A study on the pathogenesis

of vascular cognitive impairment and dementia: the chronic

cerebral hypoperfusion hypothesis[J]. Journal of clinical

medicine, 2022, 11(16): 4742.

[38]Lin J, Wang D, Lan L, et al. Multiple factors

involved in the pathogenesis of white matter lesions[J].

BioMed research international, 2017, 2017(1): 9372050.


Refbacks

  • 当前没有refback。