脑小血管病的红细胞-血流动力学调控: 病理机制与靶向干预新策略
摘要
号、腔隙性脑梗死及微出血为典型影像学特征,是血管性痴呆和缺血性卒中的主要病因,全球约7亿老年人受累,
中国老龄化加剧进一步加重其疾病负担。研究表明,红细胞特性(如变形能力降低、血红蛋白浓度异常)通过调节
颈动脉血流动力学(如血流速度、搏动指数)影响脑微循环,参与CSVD病理进程。慢性低灌注、氧化应激、炎症
级联反应及血脑屏障破坏是核心机制,其中红细胞膜刚性增加、TLR4/NF-κB通路激活、血脑屏障(Blood-Brain
Barrier,BBB)紧密连接蛋白降解等加剧神经元损伤和白质病变。当前临床干预聚焦于高血压控制、红细胞流变学
优化(如己酮可可碱改善变形能力)及血红蛋白浓度调控。未来需开发精准靶向治疗(如SIRT1/AMPK激活剂、
MMP-9抑制剂),结合多模态生物标志物(血流动力学参数+红细胞指数)和人工智能技术,推动早期筛查与个体
化治疗。转化医学需突破分子互作机制验证及多中心临床试验设计,以降低CSVD致残率和疾病负担。
关键词
全文:
PDF参考
[1]Wardlaw J M, Smith C, Dichgans M. Small vessel
disease: mechanisms and clinical implications[J]. The Lancet
Neurology, 2019, 18(7): 684-696.
[2]Litak J, Mazurek M, Kulesza B, et al. Cerebral small
vessel disease[J]. International journal of molecular sciences,
2020, 21(24): 9729.
[3]张萌,杨小林.老年缺血性脑小血管病患者海马
代谢水平及发生认知功能障碍的危险因素分析[J].中华老
年心脑血管病杂志,2025,27(04):422-425.
[4]Hua M, Ma A J, Liu Z Q, et al. Arteriolosclerosis
CSVD: a common cause of dementia and stroke and its
association with cognitive function and total MRI burden[J].
Frontiers in Aging Neuroscience, 2023, 15: 1163349.
[5]Gao Y, Li D, Lin J, et al. Cerebral small vessel disease:
Pathological mechanisms and potential therapeutic targets[J].
Frontiers in aging neuroscience, 2022, 14: 961661.
[6]Wang Y, Liu Z. Research progress on the correlation
between MRI and impairment caused by cerebral small vessel
disease: A review[J]. Medicine, 2023, 102(40): e35389.
[7]Lv Y J, Zhang Q X, Li J W, et al. Correlation
between Carotid Blood Flow Velocity and Total Magnetic
Resonance Imaging Burden of Cerebral Small Vessel Disease
in Patients with Recent Small Subcortical Infarcts[J]. Current
Neurovascular Research, 2023, 20(5): 528-534.
[8]Liu Y, Dong Y H, Lyu P Y, et al. Hypertensioninduced cerebral small vessel disease leading to cognitive
impairment[J]. Chinese medical journal, 2018, 131(05):
615-619.
[9]Roh D J, Boehme A, Mamoon R, et al. Relationships
of hemoglobin concentration, ischemic lesions, and clinical
outcomes in patients with intracerebral hemorrhage[J]. Stroke,
2023, 54(4): 1021-1029.
[10]Ebrahimi S, Bagchi P. A computational study of red
blood cell deformability effect on hemodynamic alteration in
capillary vessel networks[J]. Scientific reports, 2022, 12(1): 4304.
[11]Recktenwald S M, Graessel K, Maurer F M, et
al. Red blood cell shape transitions and dynamics in timedependent capillary flows[J]. Biophysical Journal, 2022,
121(1): 23-36.
[12]Leo F, Suvorava T, Heuser S K, et al. Red blood
cell and endothelial eNOS independently regulate circulating
nitric oxide metabolites and blood pressure[J]. Circulation,
2021, 144(11): 870-889.
[13]Yalcin O, Ortiz D, Williams A T, et al. Perfusion
pressure and blood flow determine microvascular apparent
viscosity[J]. Experimental physiology, 2015, 100(8): 977-987.
[14]Nader E, Skinner S, Romana M, et al. Blood
rheology: key parameters, impact on blood flow, role in sickle
cell disease and effects of exercise[J]. Frontiers in physiology,
2019, 10: 1329.
[15]Weisel J W, Litvinov R I. Red blood cells: the
forgotten player in hemostasis and thrombosis[J]. Journal of
Thrombosis and Haemostasis, 2019, 17(2): 271-282.
[16]Plange-Rhule J, Kerry S M, Eastwood J B, et
al. Blood pressure and haematological indices in twelve
communities in Ashanti, Ghana[J]. International journal of
hypertension, 2018, 2018(1): 5952021.
[17]Richardson K J, Kuck L, Simmonds M J. Beyond
oxygen transport: active role of erythrocytes in the regulation
of blood flow[J]. American Journal of Physiology-Heart and
Circulatory Physiology, 2020, 319(4): H866-H872.
[18]Lu Y C, Chen P J, Lu S N, et al. Comparing CarotidArtery Velocities with Current ASCVD Risk Stratification:
A Novel Approach to Simpler Risk Assessment[J]. Journal of
Epidemiology and Global Health, 2024, 14(4): 1569-1578.
[ 1 9 ] Y a n g W , J u n g K H , P a r k K I , e t a l .
Pathophysiological link between carotid atherosclerosis and
cerebral white matter lesions[J]. Scientific Reports, 2025,
15(1): 6619.
[20]Chuang S Y, Cheng H M, Mitchell G F, et al.
Carotid flow velocities and blood pressures are independently
associated with cognitive function[J]. American Journal of
Hypertension, 2019, 32(3): 289-297.
[21]Hoving A M, De Vries E E, Mikhal J, et al. A
systematic review for the design of in vitro flow studies of the
carotid artery bifurcation[J]. Cardiovascular engineering and
technology, 2020, 11: 111-127.
[22]Ma X, Ji C. Remote ischemic conditioning: a
potential treatment for chronic cerebral hypoperfusion[J].
European Neurology, 2022, 85(4): 253-259.
[23]Cechetti F, Pagnussat A S, Worm P V, et al. Chronic
brain hypoperfusion causes early glial activation and neuronal
death, and subsequent long-term memory impairment[J].
Brain research bulletin, 2012, 87(1): 109-116.
[24]Anaya-Prado R, Canseco-Villegas A I, AnayaFernández R, et al. Role of nitric oxide in cerebral
ischemia/reperfusion injury: A biomolecular overview[J].
World Journal of Clinical Cases, 2025, 13(10): 101647.
[25]Üremiş N, Üremiş M M. Oxidative/Nitrosative
Stress, Apoptosis, and Redox Signaling: Key Players in
Neurodegenerative Diseases[J]. Journal of Biochemical and
Molecular Toxicology, 2025, 39(1): e70133.
[26]Ye Z, Liu R, Wang H, et al. Neuroprotective
potential for mitigating ischemia-reperfusion-induced
damage[J]. Neural Regeneration Research, 2025, 20(8):
2199-2217.
[27]Zhang Z, Zhao L, Zhou X, et al. Role of
inflammation, immunity, and oxidative stress in hypertension:
New insights and potential therapeutic targets[J]. Frontiers in
immunology, 2023, 13: 1098725.
[28]Bai T, Yu S, Feng J. Advances in the role of
endothelial cells in cerebral small vessel disease[J]. Frontiers in
neurology, 2022, 13: 861714.
[29]Zhao W, Liu Z, Wu J, et al. Potential targets of
microglia in the treatment of neurodegenerative diseases:
mechanism and therapeutic implications[J]. Neural
Regeneration Research, 10.4103.
[30]Shoamanesh A, Preis S R, Beiser A S, et al.
Inflammatory biomarkers, cerebral microbleeds, and small
vessel disease: Framingham Heart Study[J]. Neurology, 2015,
84(8): 825-832.
[31]Behl T, Makkar R, Sehgal A, et al. Current trends in
neurodegeneration: Cross talks between oxidative stress, cell
death, and inflammation[J]. International Journal of Molecular
Sciences, 2021, 22(14): 7432.
[32]Abdul-Muneer P M, Chandra N, Haorah J.
Interactions of oxidative stress and neurovascular inflammation
in the pathogenesis of traumatic brain injury[J]. Molecular
neurobiology, 2015, 51: 966-979.
[33]Kern K C, Zagzoug M S, Gottesman R F, et al.
Blood-brain barrier disruption and increased free water are
associated with worse cognitive performance in patients with
chronic cerebrovascular disease[J]. NeuroImage: Clinical,
2024, 44: 103706.
[34]Xu W Q, Bai Q, Dong Q, et al. Blood-Brain
Barrier Dysfunction and the Potential Mechanisms in Chronic
Cerebral Hypoperfusion Induced Cognitive Impairment[J].
Frontiers in cellular neuroscience, 2022, 16: 870674.
[35]Wu X, Ya J, Zhou D, et al. Pathogeneses and
imaging features of cerebral white matter lesions of vascular
origins[J]. Aging and disease, 2021, 12(8): 2031.
[36]Yang J, Li Q, Wang Z, et al. Multimodality MRI
assessment of grey and white matter injury and blood-brain
barrier disruption after intracerebral haemorrhage in mice[J].
Scientific reports, 2017, 7(1): 40358.
[37]Yu W, Li Y, Hu J, et al. A study on the pathogenesis
of vascular cognitive impairment and dementia: the chronic
cerebral hypoperfusion hypothesis[J]. Journal of clinical
medicine, 2022, 11(16): 4742.
[38]Lin J, Wang D, Lan L, et al. Multiple factors
involved in the pathogenesis of white matter lesions[J].
BioMed research international, 2017, 2017(1): 9372050.
Refbacks
- 当前没有refback。