细胞系交叉污染鉴别的技术范式与科学逻辑 ——从形态学到基因组学的系统性整合研究

郭 文洁, 申 飞宇, 谭 雯文, 曹 雅林, 陈吉 恒*
广西医科大学

摘要


人源细胞系细胞交叉污染现象在上世纪60年代首次被报道,直到今天仍在世界范围内广泛存在并给全球细
胞实验室带来重大挑战。人源细胞系交叉污染的普遍程度令人担忧,据估计,高达30%的细胞系可能存在错误鉴定
的情况,这不仅导致了大量的经济损失,还加剧了确保实验可重复性和数据有效性的复杂性。为了应对日益严重的
细胞交叉污染和错误鉴定问题,研发和应用可靠的细胞鉴定方法成为了行业热点。本文回顾了主要的针对人源细胞
系所使用的细胞鉴定方法,并对各鉴定方法的机制、优缺点、研究进展以及发展方向进行概述,以期为细胞研究从
业人员提供人源细胞鉴定方法选择的参考。

关键词


人源细胞系;细胞系身份鉴定;短串联重复序列

全文:

PDF


参考


[1]Gartler SM. Genetic markers as tracers in cell culture.

Natl Cancer Inst Monogr. 1967 Sep;26:167-95.

[2]Capes-Davis A, et al. Check your cultures! A list of

cross-contaminated or misidentified cell lines. Int J Cancer.2010 Jul 1;127(1):1-8.

[3]Lacroix M.Persistent use of“false”cell lines[J].Int J

Cancer,2010,122(1):1-4.

[4]Ye F, et al. Genetic profiling reveals an alarming

rate of cross-contamination among human cell lines used in

China. FASEB J. 2015 Oct;29(10):4268-72.

[5]Neimark J. Line of attack. Science. 2015 Feb

27;347(6225):938-40.

[6]Gruber-Bzura BM, et al. Quality and Purity of L929

Cell Cultures: Isoenzyme Profiles As a Sensitive Marker of

Cross-Contamination. Biopreserv Biobank. 2023;21(1):90-97.

[7]ATCC® SDO Workgroup ASN-0002 Cell line

misidentification: the beginning of the end. Nat. Rev. Cancer.

2010;10:441-448.

[8]Kaplan J, Hukku B. Cell line characterization and

authentication. Methods Cell Biol. 1998;57:203-216.

[9]American Type Culture Collection Standards

Development Organization Workgroup ASN-0002. Cell

line misidentification: the beginning of the end. Nat. Rev.

Cancer. 2010;10:441-448.

[10]Capes-Davis A, Neve RM. Authentication: A

Standard Problem or a Problem of Standards? PLoS Biol. 2016

Jun 14;14(6):e1002477.

[11]Verbiest MA, Lundström O, Xia F, Baudis M,

Bilgin Sonay T, Anisimova M. Short tandem repeat mutations

regulate gene expression in colorectal cancer. Sci Rep. 2024

Feb 9;14(1):3331.

[12]Vicente E, Lesniewski M, Newman D, Vujaskovic Z,

Jackson IL. Best Practices for Authentication of Cell Lines to

Ensure Data Reproducibility and Integrity. Radiat Res. 2022

Mar 1;197(3):209-217.

[13]Chen J, Xu L, Li X, Park S. Deep learning models

for cancer stem cell detection: a brief review. Front Immunol.

2023;14:1214425. Published 2023 Jun 27.

[14]Sun H, Han X, Du Z, Chen G, Guo T, Xie F, Gu W,

Shi Z. Machine learning for the identification of neoantigenreactive CD8+T cells in gastrointestinal cancer using singlecell sequencing. Br J Cancer. 2024 Jul;131(2):387-402.


Refbacks

  • 当前没有refback。