血脂水平与乳腺癌关联的研究动态与前沿视角

马 俊楠1, 赵 易*2
1、青海大学附属医院临床医学院
2、青海大学附属医院

摘要


乳腺癌是全球女性最常见的恶性肿瘤之一,其发病机制复杂,涉及遗传、代谢及环境因素的相互作用。近年来,血脂代谢异常与乳腺癌风险及预后的关联成为研究热点。流行病学研究表明,高胆固醇血症、肥胖及高脂血症可显著增加乳腺癌发生风险,而运动干预可能通过调节血脂水平及改善肿瘤微环境发挥保护作用。现有研究表明,血脂代谢异常与乳腺癌发病风险存在显著关联。多项研究证实,高体重指数(BMI)、高甘油三酯(TG)水平以及升高的低密度脂蛋白胆固醇(LDL-C)与乳腺癌风险呈正相关,而高密度脂蛋白胆固醇(HDL-C)可能发挥保护作用。另外,目前的研究尚未发现脂蛋白(LP)与乳腺癌发病存在明确关联。在特定血脂成分中,载脂蛋白A1(ApoA1)与乳腺癌风险呈负相关,而载脂蛋白B(ApoB)可能促进乳腺癌发生发展,但相关证据仍需更多研究加以验证。关于LDL-C与乳腺癌的关系,现有研究结果尚不一致,部分研究未能证实两者之间存在显著关联。在临床干预方面,他汀类药物的使用显示出通过调节胆固醇水平改善乳腺癌预后的潜在价值,这为乳腺癌的防治策略提供了新的研究方向。这些发现提示,血脂水平的精准调控可能在乳腺癌预防和治疗中具有重要意义。
  目前,血脂影响乳腺癌的潜在机制涉及炎症反应、氧化应激、雌激素代谢及脂质信号通路激活等多个方面,但仍需进一步研究以明确其分子机制。本文综述了血脂水平与乳腺癌关联的最新研究进展,为乳腺癌的早期风险评估、个体化治疗及代谢干预策略提供理论依据。

关键词


乳腺癌;血脂代谢;胆固醇;肥胖;他汀类药物;分子机制

全文:

PDF


参考


[1]COUGHLIN S S. Epidemiology of Breast Cancer in Women[J]. Adv Exp Med Biol, 2019, 1152:9-29.

[2]BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3):229-263.

[3]GOLDBERG I J. 2017 George Lyman Duff Memorial Lecture: Fat in the Blood, Fat in the Artery, Fat in the Heart: Triglyceride in Physiology and Disease[J]. Arterioscler Thromb Vasc Biol, 2018, 38(4):700-706.

[4]GARCIA-ESTEVEZ L, MORENO-BUENO G. Updating the role of obesity and cholesterol in breast cancer[J]. Breast Cancer Res, 2019, 21(1):35.

[5]BUSS L A, DACHS G U. The Role of Exercise and Hyperlipidaemia in Breast Cancer Progression[J]. Exerc Immunol Rev, 2018, 24:10-25.

[6]WU Q J, TU C, LI Y Y, et al. Statin use and breast cancer survival and risk: a systematic review and meta-analysis[J]. Oncotarget, 2015, 6(40):42988-43004.

[7]HU Y, YANG S. A cross-sectional study of serum lipids, body mass index and age relationships with breast cancer risk[J]. World J Surg Oncol, 2025, 23(1):168.

[8]PANDRANGI S L, CHITTINEEDI P, CHIKATI R, et al. Role of Lipoproteins in the Pathophysiology of Breast Cancer[J]. Membranes (Basel), 2022, 12(5):532.

[9]NI H, LIU H, GAO R. Serum Lipids and Breast Cancer Risk: A Meta-Analysis of Prospective Cohort Studies[J]. PLoS One, 2015, 10(11):e0142669.

[10]SUN X B, LIU W W, WANG B, et al. Correlations between serum lipid and Ki-67 levels in different breast cancer molecular subcategories[J]. Oncol Lett, 2023, 25(2):53.

[11]ZHOU Y, LUO G. Apolipoproteins, as the carrier proteins for lipids, are involved in the development of breast cancer[J]. Clin Transl Oncol, 2020, 22(11):1952-1962.

[12]ALIKHANI N, FERGUSON R D, NOVOSYADLYY R, et al. Mammary tumor growth and pulmonary metastasis are enhanced in a hyperlipidemic mouse model[J]. Oncogene, 2013, 32(8):961-967.

[13]KIM E J, CHOI M R, PARK H, et al. Dietary fat increases solid tumor growth and metastasis of 4T1 murine mammary carcinoma cells and mortality in obesity-resistant BALB/c mice[J]. Breast Cancer Res, 2011, 13(4):R78.

[14]LLAVERIAS G, DANILO C, MERCIER I, et al. Role of cholesterol in the development and progression of breast cancer[J]. Am J Pathol, 2011, 178(1):402-412.

[15]PELTON K, COTICCHIA C M, CURATOLO A S, et al. Hypercholesterolemia induces angiogenesis and accelerates growth of breast tumors in vivo[J]. Am J Pathol, 2014, 184(7):2099-2110.

[16]DOS SANTOS C R, DOMINGUES G, MATIAS I, et al. LDL-cholesterol signaling induces breast cancer proliferation and invasion[J]. Lipids Health Dis, 2014, 13:16.

[17]DUSELL C D, MCDONNELL D P. 27-Hydroxycholesterol: a potential endogenous regulator of estrogen receptor signaling[J]. Trends Pharmacol Sci, 2008, 29(10):510-514.

[18]NELSON E R, CHANG C Y, MCDONNELL D P. Cholesterol and breast cancer pathophysiology[J]. Trends Endocrinol Metab, 2014, 25(12):649-655.

[19]NELSON E R, WARDELL S E, JASPER J S, et al. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology[J]. Science, 2013, 342(6162):1094-1098.

[20]WU Q, ISHIKAWA T, SIRIANNI R, et al. 27-Hydroxycholesterol promotes cell-autonomous, ER-positive breast cancer growth[J]. Cell Rep, 2013, 5(3):637-645.

[21]DUSELL C D, UMETANI M, SHAUL P W, et al. 27-hydroxycholesterol is an endogenous selective estrogen receptor modulator[J]. Mol Endocrinol, 2008, 22(1):65-77.

[22]LAPPANO R, RECCHIA A G, DE FRANCESCO E M, et al. The cholesterol metabolite 25-hydroxycholesterol activates estrogen receptor α-mediated signaling in cancer cells and in cardiomyocytes[J]. PLoS One, 2011, 6(1):e16631.

[23]TRAVERSARI C, SOZZANI S, STEFFENSEN K R, et al. LXR-dependent and -independent effects of oxysterols on immunity and tumor growth[J]. Eur J Immunol, 2014, 44(7):1896-1903.

[24]NELSON R H. Hyperlipidemia as a risk factor for cardiovascular disease[J]. Prim Care, 2013, 40(1):195-211.

[25]HOVLAND A, JONASSON L, GARRED P, et al. The complement system and toll-like receptors as integrated players in the pathophysiology of atherosclerosis[J]. Atherosclerosis, 2015, 241(2):480-494.

[26]BHATELIA K, SINGH K, SINGH R. TLRs: linking inflammation and breast cancer[J]. Cell Signal, 2014, 26(11):2350-2357.

[27]GANJALI S, RICCIUTI B, PIRRO M, et al. High-Density Lipoprotein Components and Functionality in Cancer: State-of-the-Art[J]. Trends Endocrinol Metab, 2019, 30(1):12-24.

[28]ZHAO T J, ZHU N, SHI Y N, et al. Targeting HDL in tumor microenvironment: New hope for cancer therapy[J]. J Cell Physiol, 2021, 236(11):7853-7873.

[29]李俊杰.早期乳腺癌局部治疗与全身治疗的进展与展望[J].中国癌症杂志,2025,35(02):205-212.

[30]VANNI G, PELLICCIARO M, MATERAZZO M, et al. The role of sentinel lymph biopsy in patients with microinvasive breast cancer: A multicentric study[J]. Eur J Surg Oncol, 2025, 51(5):109601.

[31]HEUMANN P, BENNER A, BEHRENS S, et al. Prognostic value of cancer-related fatigue at the end of radiotherapy for overall survival ≥ 10 years in women with breast cancer[J]. Breast Cancer Res, 2025, 27(1):76.

[32]KANG Y, HAN B, KONG Y, et al. Efficacy and safety of first-line CDK4/6 inhibitors plus AI therapy for patients with HR +/HER2- advanced breast cancer: a network meta-analysis[J]. BMC Cancer, 2025, 25(1):843.

[33]余煜,姚燕丹.腔镜在乳腺癌外科治疗应用的研究进展[J].中山大学学报(医学科学版),2024,45(03):361-369.

[34]温博涵,韩宝三.我国乳腺癌保乳治疗研究进展[J].现代肿瘤医学,2024,32(04):743-748.

[35]MAAN M, PETERS J M, DUTTA M, et al. Lipid metabolism and lipophagy in cancer[J]. Biochem Biophys Res Commun, 2018, 504(3):582-589.

[36]BIAN X, LIU R, MENG Y, et al. Lipid metabolism and cancer[J]. J Exp Med, 2021, 218(1):e20201606.

[37]BELORIBI-DJEFAFLIA S, VASSEUR S, GUILLAUMOND F. Lipid metabolic reprogramming in cancer cells[J]. Oncogenesis, 2016, 5(1):e189.

[38]MURTOLA T J, VISVANATHAN K, ARTAMA M, et al. Statin use and breast cancer survival: a nationwide cohort study from Finland[J]. PLoS One, 2014, 9(10):e110231.

[39]CARDWELL C R, HICKS B M, HUGHES C, et al. Statin use after diagnosis of breast cancer and survival: a population-based cohort study[J]. Epidemiology, 2015, 26(1):68-78.

[40]MANDAL C C, GHOSH-CHOUDHURY N, YONEDA T, et al. Simvastatin prevents skeletal metastasis of breast cancer by an antagonistic interplay between p53 and CD44[J]. J Biol Chem, 2011, 286(13):11314-11327.

[41]GHOSH-CHOUDHURY N, MANDAL C C, GHOSH-CHOUDHURY N, et al. Simvastatin induces derepression of PTEN expression via NFkappaB to inhibit breast cancer cell growth[J]. Cell Signal, 2010, 22(5):749-758.

[42]SHIBATA M A, ITO Y, MORIMOTO J, et al. Lovastatin inhibits tumor growth and lung metastasis in mouse mammary carcinoma model: a p53-independent mitochondrial-mediated apoptotic mechanism[J]. Carcinogenesis, 2004, 25(10):1887-1898.

[43]RAO S, LOWE M, HERLICZEK T W, et al. Lovastatin mediated G1 arrest in normal and tumor breast cells is through inhibition of CDK2 activity and redistribution of p21 and p27, independent of p53[J]. Oncogene, 1998, 17(18):2393-2402.

[44]SKRIVER C, CRONIN-FENTON D, BORGQUIST S, et al. Statin use and risk of breast cancer among women with benign breast disease: a Danish nationwide cohort study[J]. Br J Cancer, 2025, 132(9):828-836.

[45]AHERN T P, LASH T L, DAMKIER P, et al. Statins and breast cancer prognosis: evidence and opportunities[J]. Lancet Oncol, 2014, 15(10):e461-468.


Refbacks

  • 当前没有refback。