结直肠息肉与胆囊疾病的潜在关联
摘要
关键词
全文:
PDF参考
[1]张祥宏,崔晋峰,周炜洵,陈杰,石雪迎.胃肠道腺瘤和良性上皮性息肉的病理诊断共识[J].中华病理学杂志,2020,49(1):3-11
[2]王少明,郑荣寿,韩冰峰,李荔等.2022年中国人群恶性肿瘤发病与死亡年龄特征分析[J].中国肿瘤.2024,33(03):165-174.
[3]Markowitz SD, Bertagnolli MM. Molecular origins of cancer: Molecular basis of colorectal cancer[J]. N Engl J Med, 2009, 361(25): 2449-2460.
[4]Li X, Hu M, Wang Z, et al. Prevalence of diverse colorectal polyps and risk factors of colorectal carcinoma in situ and neoplastic polyps[J]. J Transl Med, 2024, 22(1): 361.
[5]龙思丹,孙希珍,赵栋燕,等.肠息肉病因学相关性研究进展[J].医学综述,2020,26(14):2728-2732.
[6]龙思丹,季双双,姚树坤.肠息肉患者的人口学特征与生活习惯研究进展[J].中国中西医结合消化杂志,2020,28(4):319-322
[7]KIM S S,DONAHUE T R. Laparoscopic Cholecystectomy[J]. Jama 2018 319(17):1834.
[8]ANDREEV D N, KUCHERYAVYY Y A.Obesity as a risk factor for diseases of the digestive system Article in Russian[J]. Ter Arkh, 2021, 93(8): 954-962.
[9]MURPHY M C, DEMPSEY P J, GILLESPIE C D, et al.Increased incidence of acutecalculous cholecystitis observed during COVID-19 social restrictions[J]. Ir J Med Sci, 2022, 191(1): 229-232.
[10]WANG T Y, PORTINCASA P, LIU M, et al.Mouse models of gallstone disease[J]. Curr Opin Gastroenterol, 2018, 34(2): 59-70.
[11]LAVOIE B, NAUSCH B, ZANE E A, et al.Disruption of gallbladder smooth muscle function is an early feature in the development of cholesterol gallstone disease[J]. Neurogastroenterol Motil, 2012, 24(7): e313-e324.
[12]阎良,黄建平.胆固醇结石的发病机制与治疗[J]. 中国中西医结合消化杂志,2022,30(9):679-684.
[13]张鹏云,徐鹏远,孙岩波,等.从分子生物学的角度来看胆固醇结石的成因[J]. 肿瘤代谢与营养(连续型电子期刊),2022,9(4):507-511.
[14]Knab L M, Boller A, Mahvi D M. Cholecystitis[J]. Surg ical Clinics of NorthAmerica, 2014, 94 (2): 4 55 -470.
[15]China Anti-c ancer Association .中国恶性肿瘤整合诊治指南:胆囊癌[J]. 肿瘤,2022,42(03):188-202.
[16]Balla l M, Jyoth i K N, Antony B, et al. Bacterio logical spectru m of cholecy stitis and its an tibio gram[J]. Indian J Med Microb io l, 2001, 19(4 ): 212 -214.
[17]谭宜将,刘衍民.胆囊结石发病原因研究现状与进展[J]. 中国实用外科杂志,2009,29(07):602-603.
[18]Portinca sa P, Di Cia ula A, VanBerge -Henegouwen G P. Smoo th musclefunction and dy sfunc tion in gallb ladder disease[J]. Curr Gastroenterol Rep, 2004, 6(2 ): 151 -162.
[19]Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. (2003) 72: 137-74.
[20]Chiang JY. Bile acids: regulation of synthesis. J Lipid Res. (2009) 50: 1955-66.
[21]Hylemon PB, Zhou H, Pandak WM, Ren S, Gil G, Dent P. Bile acids as regulatory molecules. J Lipid Res. (2009) 50: 1509-20.
[22]Hylemon PB, Zhou H, Pandak WM, Ren S, Gil G, Dent P. Bile acids as regulatory molecules. J Lipid Res. (2009) 50: 1509-20.
[23]Ridlon JM, Harris SC, Bhowmik S, Kang DJ, Hylemon PB. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes. (2016) 7: 22-39.
[24]Schernhammer ES, Leitzmann MF, Michaud DS, et al, ??Cholecystectomy and the risk for developing colorectal cancer and distal colorectal adenomas. Br J Cancer, 2003, 88(1): 79-83.
[25]Cortes V, Amigo L, Zanlungo S, Galgani J, Robledo F, Arrese M, et al. Metabolic effects of cholecystectomy: gallbladder ablation increases basal metabolic rate through G-protein coupled bile acid receptor Gpbar1-dependent mechanisms in mice. PLoS One. (2015) 10: e0118478.
[26]Kullak-Ublick GA, Paumgartner G, Berr F. Long-term effects of cholecystectomy on bile acid metabolism. Hepatology. (1995) 21: 41-5.
[27]Housset C, Chrétien Y, Debray D, Chignard N. Functions of the Gallbladder. Compr Physiol. (2016) 6: 1549-77.
[28]Dong W, Liu L, Dou Y, Xu M, Liu T, Wang S, et al. Deoxycholic acid activates epidermal growth factor receptor and promotes intestinal carcinogenesis by ADAM 17-dependent ligand release. J Cell Mol Med. (2018) 22: 4263-73.
[29]Liu L, Dong W, Wang S, Zhang Y, Liu T, Xie R, et al. Deoxycholic acid disrupts the intestinal mucosal barrier and promotes intestinal tumorigenesis. Food Funct. (2018) 9: 5588-97.
[30]Yao Y, Li X, Xu B, Luo L, Guo Q, Wang X, et al. Cholecystectomy promotes colon carcinogenesis by activating the Wnt signaling pathway by increasing the deoxycholic acid level. Cell Commun Signal. (2022) 20: 85.
[31]Nagengast F, Grubben M, Van Munster I. Role of bile acids in colorectal carcinogenesis. Eur J Cancer. (1995) 31: 1067-70.
[32]Nagengast FM. Bile acids and colonic carcinogenesis. Scand J Gastroenterol. (1988) 23: 76-81.
[33]Kuhls S, Osswald A, Ocvirk S. Bile acids, bile pigments and colorectal cancer risk. Curr Opin Gastroenterol. (2022) 38: 173-8.
[34]Pai R, Tarnawski AS, Tran T. Deoxycholic acid activates β-catenin signaling pathway and increases colon cell cancer growth and invasiveness. Mol Biol Cell. (2004) 15: 2156-63.
[35]Peiffer L, Peters D, McGarrity T. Differential effects of deoxycholic acid on proliferation of neoplastic and differentiated colonocytes in vitro. Dig Dis Sci. (1997) 42: 2234-40.
[36]Milovic V, Teller IC, Faust D, Caspary WF, Stein J. Effects of deoxycholate on human colon cancer cells: apoptosis or proliferation. Eur J Clin Invest. (2002) 32: 29-34.
[37]Fu T, Coulter S, Yoshihara E, Oh TG, Fang S, Cayabyab F, et al. FXR regulates intestinal cancer stem cell proliferation. Cell. (2019) 176: 1098-112.e18.
[38]Flynn CG. Understanding the Promotional Effect of Deoxycholic Acid During Colorectal Cancer Development. Doctoral dissertations. Mansfield, CT: University of Connecticut (2008).
[39]Chen ML, Takeda K, Sundrud MS. Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal Immunol. (2019) 12: 851-61. doi: 10.1038/s41385-019-0162-4
[40]Zeng H, Umar S, Rust B. Secondary bile acids and short chain fatty acids in the colon: a focus on colonic microbiome, cell proliferation, inflammation, and cancer. Int J Mol Sci. (2019) 20: 1214.
[41]Sorrentino G, Perino A, Yildiz E, El Alam G, Bou Sleiman M, Gioiello A, et al. Bile acids signal via TGR5 to activate intestinal stem cells and epithelial regeneration. Gastroenterology. (2020) 159: 956-68.e8.
[42]Shah SA, Volkov Y, Arfin Q, Abdel-Latif MM, Kelleher D. Ursodeoxycholic acid inhibits interleukin 1 beta [corrected] and deoxycholic acid-induced activation of NF-kappaB and AP-1 in human colon cancer cells. Int J Cancer. (2006) 118: 532-9.
[43]Song X, An Y, Chen D, Zhang W, Wu X, Li C, et al. Microbial metabolite deoxycholic acid promotes vasculogenic mimicry formation in intestinal carcinogenesis. Cancer Sci. (2022) 113: 459-77.
[44]Arvind P, Papavassiliou ED, Tsioulias GJ, Duceman BW, Lovelace CI, Geng W, et al. Lithocholic acid inhibits the expression of HLA class I genes in colon adenocarcinoma cells. Differential effect on HLA-A, -B and -C loci. Mol Immunol. (1994) 31: 607-14.
[45]Farhana L, Nangia-Makker P, Arbit E, Shango K, Sarkar S, Mahmud H, et al. Bile acid: a potential inducer of colon cancer stem cells. Stem Cell Res Ther. (2016) 7: 181.
[46]Fan, Y.; Pedersen, O. Gut Microbiota in Human Metabolic Health and Disease. Nat. Rev. Microbiol.; 2020; 19, pp. 55-71.
[47]Serino, M.; Luche, E.; Gres, S.; Baylac, A.; Bergé, M.; Cenac, C.; Waget, A.; Klopp, P.; Iacovoni, J.; Klopp, C. et al. Metabolic Adaptation to a High-Fat Diet Is Associated with a Change in the Gut Microbiota. Gut; 2012; 61, pp. 543-553.
[48]Aron-Wisnewsky, J.; Warmbrunn, M.V.; Nieuwdorp, M.; Clément, K. Metabolism and Metabolic Disorders and the Microbiome: The Intestinal Microbiota Associated with Obesity, Lipid Metabolism, and Metabolic Health-Pathophysiology and Therapeutic Strategies. Gastroenterology; 2021; 160,
[49]Gurung, M.; Li, Z.; You, H.; Rodrigues, R.; Jump, D.B.; Morgun, A.; Shulzhenko, N. Role of Gut Microbiota in Type 2 Diabetes Pathophysiology. EBioMedicine; 2020; 51, 102590.
[50]Knights, D.; Lassen, K.G.; Xavier, R.J. Advances in Inflammatory Bowel Disease Pathogenesis: Linking Host Genetics and the Microbiome. Gut; 2013; 62, pp. 1505-1510.
[51]Li, J.; Butcher, J.; Mack, D.; Stintzi, A. Functional Impacts of the Intestinal Microbiome in the Pathogenesis of Inflammatory Bowel Disease. Inflamm. Bowel Dis.; 2015; 21, pp. 139-153.
[52]Jie, Z.; Xia, H.; Zhong, S.L.; Feng, Q.; Li, S.; Liang, S.; Zhong, H.; Liu, Z.; Gao, Y.; Zhao, H. et al. The Gut Microbiome in Atherosclerotic Cardiovascular Disease. Nat. Commun.; 2017; 8, 845.
[53]Witkowski, M.; Weeks, T.L.; Hazen, S.L. Gut Microbiota and Cardiovascular Disease. Circ. Res.; 2020; 127, pp. 553-570.
[54]Witkowski, M.; Weeks, T.L.; Hazen, S.L. Gut Microbiota and Cardiovascular Disease. Circ. Res.; 2020; 127, pp. 553-570.
[55]Nguyen, L.H.; Goel, A.; Chung, D.C. Pathways of Colorectal Carcinogenesis. Gastroenterology; 2020; 158, pp. 291-302.
[56]Munemitsu, S.; Albert, I.; Souza, B.; Rubinfeld, D.; Polakis, P. Regulation of Intracellular Beta-Catenin Levels by the Adenomatous Polyposis Coli (APC) Tumor-Suppressor Protein. Proc. Natl. Acad. Sci. USA; 1995; 92, pp. 3046-3050.
[57]Malki, A.; Elruz, R.A.; Gupta, I.; Allouch, A.; Vranic, S.; Al Moustafa, A.E. Molecular Mechanisms of Colon Cancer Progression and Metastasis: Recent Insights and Advancements. Int. J. Mol. Sci.; 2021; 22, 130.
[58]Wu, Y.; Jiao, N.; Zhu, R.; Zhang, Y.; Wu, D.; Wang, A.J.; Fang, S.; Tao, L.; Li, Y.; Cheng, S. et al. Identification of Microbial Markers across Populations in Early Detection of Colorectal Cancer. Nat. Commun.; 2021; 12, 3063.
[59]Dai, Z.; Coker, O.O.; Nakatsu, G.; Wu, W.K.K.; Zhao, L.; Chen, Z.; Chan, F.K.L.; Kristiansen, K.; Sung, J.J.Y.; Wong, S.H. et al. Multi-Cohort Analysis of Colorectal Cancer Metagenome Identified Altered Bacteria across Populations and Universal Bacterial Markers. Microbiome; 2018; 6, 70.
[60]Kostic, A.D.; Gevers, D.; Pedamallu, C.S.; Michaud, M.; Duke, F.; Earl, A.M.; Ojesina, A.I.; Jung, J.; Bass, A.J.; Tabernero, J. et al. Genomic Analysis Identifies Association of Fusobacterium with Colorectal Carcinoma. Genome Res.; 2012; 22, pp. 292-298.
[61]White, M.T.; Sears, C.L. The Microbial Landscape of Colorectal Cancer. Nat. Rev. Microbiol.; 2024; 22, pp. 240-254.
[62]Secher, T.; Samba-Louaka, A.; Oswald, E.; Nougayrède, J.P. Escherichia Coli Producing Colibactin Triggers Premature and Transmissible Senescence in Mammalian Cells. PLoS ONE; 2013; 8, e77157.
[63]Wilson, M.R.; Jiang, Y.; Villalta, P.W.; Stornetta, A.; Boudreau, P.D.; Carrá, A.; Brennan, C.A.; Chun, E.; Ngo, L.; Samson, L.D. et al. The Human Gut Bacterial Genotoxin Colibactin Alkylates DNA. Science; 2019; 363, eaar7785.
[64]Wu, S.; Morin, P.J.; Maouyo, D.; Sears, C.L. Bacteroides Fragilis Enterotoxin Induces C-Myc Expression and Cellular Proliferation. Gastroenterology; 2003; 124, pp. 392-400.
[65]Brennan, C.A.; Garrett, W.S. Fusobacterium Nucleatum—Symbiont, Opportunist and Oncobacterium. Nat. Rev. Microbiol.; 2018; 17, pp. 156-166.
[66]Tahara, T.; Yamamoto, E.; Suzuki, H.; Maruyama, R.; Chung, W.; Garriga, J.; Jelinek, J.; Yamano, H.; Sugai, T.; An, B. et al. Fusobacterium in Colonic Flora and Molecular Features of Colorectal Carcinoma. Cancer Res.; 2014; 74, pp. 1311-1318.
[67]Du, L.; Song, J. Delivery, Structure, and Function of Bacterial Genotoxins. Virulence; 2022; 13, pp. 1199-1215.
[68]Grasso, F.; Frisan, T. Bacterial Genotoxins: Merging the DNA Damage Response into Infection Biology. Biomolecules; 2015; 5, pp. 1762-1782.
[69]HOOFNAGLE J H. FXR agonists as therapy for liver disease[J]. Hepatology, 2020, 72(1): 1-3.
[70]MASSAFRA V, VAN MIL S W C. Farnesoid X receptor: a”homeostat”for hepatic nutrient metabolism[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(1): 45-59.
[71]Lee JK et al.(2023)”Post-Cholecystectomy Colorectal Cancer Screening: A Systematic Review and Meta-analysis” Journal of Clinical Medicine, 12(4), 1456.
[72]Smith SC, et al.(2024)”Ursodeoxycholic Acid for Chemoprevention of Colorectal Adenoma Recurrence: A Phase II Randomized Trial” Clinical Gastroenterology and Hepatology, 20(8), 1789-1797
Refbacks
- 当前没有refback。