蛋白质精氨酸甲基转移酶与胰岛素抵抗相关性疾病

刘 细连1, 严 佳1, 蒋 明珺1, 陈亚 军*1, 钟 警2
1、南华大学附属第二医院
2、南华大学附属第一医院

摘要


胰岛素抵抗是2型糖尿病、肥胖、非酒精性脂肪肝、高血压及代谢综合征等代谢性疾病的核心病理特征。蛋白质精氨酸甲基转移酶作为广泛存在的翻译后修饰酶,在肿瘤、神经退行性疾病、心血管代谢疾病、肌肉疾病及炎症中发挥关键作用,但其在代谢功能中的角色尚未充分阐明。本综述旨在系统解析PRMTs在代谢功能中的特异性作用,揭示其作为代谢疾病治疗靶点的潜在价值。

关键词


PRMTs;胰岛素抵抗;代谢性疾病;表观遗传调控

全文:

PDF


参考


[1]Mastrototaro L, Roden M. Insulin resistance and insulin sensitizing agents [J]. Metabolism, 2021, 125: 154892.

[2]International Diabetes Federation. IDF Diabetes Atlas, 10th edn [CM]. Brussels, Belgium: International Diabetes Federation, 2021.

[3]中华医学会糖尿病学分会.中国2型糖尿病防治指南(2020年版)[J].中国实用内科杂志,2021,41(8).

[4]Guccione E, Richard S. The regulation, functions and clinical relevance of arginine methylation [J]. Nat Rev Mol Cell Biol, 2019, 20(10): 642-57.

[5]Choi S, Choi D, Lee Y K, et al. Depletion of Prmt1 in Adipocytes Impairs Glucose Homeostasis in Diet-Induced Obesity [J]. Diabetes, 2021, 70(8): 1664-78.

[6]Xia L, Zhang H X, Xing M L, et al. Knockdown of PRMT1 suppresses IL-1β-induced cartilage degradation and inflammatory responses in human chondrocytes through Gli1-mediated Hedgehog signaling pathway [J]. Mol Cell Biochem, 2018, 438(1-2): 17-24.

[7]Wang K, Luo L, Fu S, et al. PHGDH arginine methylation by PRMT1 promotes serine synthesis and represents a therapeutic vulnerability in hepatocellular carcinoma [J]. Nat Commun, 2023, 14(1): 1011.

[8]Iwasaki H, Yada T. Protein arginine methylation regulates insulin signaling in L6 skeletal muscle cells [J]. Biochem Biophys Res Commun, 2007, 364(4): 1015-21.

[9]Xuan X, Zhang Y, Song Y, et al. Role of protein arginine methyltransferase 1 in obesity-related metabolic disorders: Research progress and implications [J]. Diabetes Obes Metab, 2024, 26(9): 3491-500.

[10]侯毅枫,邓娴,陆天聪,et al.蛋白质精氨酸甲基化参与基因转录后调控的研究进展[J].生命科学,2015,27(3):351-62.

[11]Al-Hamashi A A, Diaz K, Huang R. Non-Histone Arginine Methylation by Protein Arginine Methyltransferases [J]. Curr Protein Pept Sci, 2020, 21(7): 699-712.

[12]Ma J, He X, Cao Y, et al. Islet-specific Prmt5 excision leads to reduced insulin expression and glucose intolerance in mice [J]. J Endocrinol, 2020, 244(1): 41-52.

[13]Zhu Q, Wang D, Liang F, et al. Protein arginine methyltransferase PRMT1 promotes adipogenesis by modulating transcription factors C/EBPβ and PPARγ [J]. J Biol Chem, 2022, 298(9): 102309.

[14]Yadav N, Cheng D, Richard S, et al. CARM1 promotes adipocyte differentiation by coactivating PPARgamma [J]. EMBO Rep, 2008, 9(2): 193-8.

[15]Leem Y E, Bae J H, Jeong H J, et al. PRMT7 deficiency enhances adipogenesis through modulation of C/EBP-β [J]. Biochem Biophys Res Commun, 2019, 517(3): 484-90.

[16]Han H S, Choi B H, Jang S Y, et al. Regulation of hepatic lipogenesis by asymmetric arginine methylation [J]. Metabolism, 2024, 157: 155938.

[17]So H K, Kim S, Kang J S, et al. Role of Protein Arginine Methyltransferases and Inflammation in Muscle Pathophysiology [J]. Front Physiol, 2021, 12: 712389.

[18]Hassa P O, Covic M, Bedford M T, et al. Protein arginine methyltransferase 1 coactivates NF-kappaB-dependent gene expression synergistically with CARM1 and PARP1 [J]. J Mol Biol, 2008, 377(3): 668-78.

[19]Wang J, Hua H, Wang F, et al. Arginine methylation by PRMT2 promotes IFN-β production through TLR4/IRF3 signaling pathway [J]. Mol Immunol, 2021, 139: 202-10.

[20]Wei H, Wang B, Miyagi M, et al. PRMT5 dimethylates R30 of the p65 subunit to activate NF-κB [J]. Proc Natl Acad Sci U S A, 2013, 110(33): 13516-21.

[21]Di Lorenzo A, Yang Y, Macaluso M, et al. A gain-of-function mouse model identifies PRMT6 as a NF-κB coactivator [J]. Nucleic Acids Res, 2014, 42(13): 8297-309.

[22]Brown J I, Alibhai J, Zhu E, et al. Methylarginine efflux in nutrient-deprived yeast mitigates disruption of nitric oxide synthesis [J]. Amino Acids, 2023, 55(2): 215-33.

[23]Vanlieshout T L, Ljubicic V. The emergence of protein arginine methyltransferases in skeletal muscle and metabolic disease [J]. Am J Physiol Endocrinol Metab, 2019, 317(6): E1070-e80.

[24]Zhang Y, Wei S, Jin E J, et al. Protein Arginine Methyltransferases: Emerging Targets in Cardiovascular and Metabolic Disease [J]. Diabetes Metab J, 2024, 48(4): 487-502.

[25]Krones-Herzig A, Mesaros A, Metzger D, et al. Signal-dependent control of gluconeogenic key enzyme genes through coactivator-associated arginine methyltransferase 1 [J]. J Biol Chem, 2006, 281(6): 3025-9.

[26]Tsai W W, Niessen S, Goebel N, et al. PRMT5 modulates the metabolic response to fasting signals [J]. Proc Natl Acad Sci U S A, 2013, 110(22): 8870-5.

[27]Choi D, Oh K J, Han H S, et al. Protein arginine methyltransferase 1 regulates hepatic glucose production in a FoxO1-dependent manner [J]. Hepatology, 2012, 56(4): 1546-56.

[28]Hwang J W, So Y S, Bae G U, et al. Protein arginine methyltransferase 6 suppresses adipogenic differentiation by repressing peroxisome proliferator‑activated receptor γ activity [J]. Int J Mol Med, 2019, 43(6): 2462-70.

[30]Zhong Y, Wang Y, Li X, et al. PRMT4 Facilitates White Adipose Tissue Browning and Thermogenesis by Methylating PPARγ [J]. Diabetes, 2023, 72(8): 1095-111.

[31]Jeong H J, Lee H J, Vuong T A, et al. Prmt7 Deficiency Causes Reduced Skeletal Muscle Oxidative Metabolism and Age-Related Obesity [J]. Diabetes, 2016, 65(7): 1868-82.

[32]Xu L, Huang Z, Lo T H, et al. Hepatic PRMT1 ameliorates diet-induced hepatic steatosis via induction of PGC1α [J]. Theranostics, 2022, 12(6): 2502-18.

[33]Hoekstra M, Nahon J E, De Jong L M, et al. Inhibition of PRMT3 activity reduces hepatic steatosis without altering atherosclerosis susceptibility in apoE knockout mice [J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(6): 1402-9.

[34]Zheng S, Zeng C, Huang A, et al. Relationship between protein arginine methyltransferase and cardiovascular disease (Review) [J]. Biomed Rep, 2022, 17(5): 90.

[35]Zhang L, Wang H, Li W. PRMT5 up-regulation improves myocardial hypertrophy by mediating E2F-1/NF-κB/NLRP3 pathway [J]. Prev Med, 2023, 172: 107553.

[36]Jeong M H, Jeong H J, Ahn B Y, et al. PRMT1 suppresses ATF4-mediated endoplasmic reticulum response in cardiomyocytes [J]. Cell Death Dis, 2019, 10(12): 903.

[37]Vurusaner B, Thevkar-Nages P, Kaur R, et al. Loss of PRMT2 in myeloid cells in normoglycemic mice phenocopies impaired regression of atherosclerosis in diabetic mice [J]. Sci Rep, 2022, 12(1): 12031.

[38]Cao M, Nguyen T, Song J, et al. Biomedical effects of protein arginine methyltransferase inhibitors [J]. J Biol Chem, 2025, 301(3): 108201.


Refbacks

  • 当前没有refback。