脓毒症与血管内皮糖萼研究进展

肖 坤1, 孟 舰*2
1、承德医学院
2、沧州市人民医院

摘要


脓毒症是由感染引起的全身性炎症反应,常导致多器官功能障碍,是全球性的重大健康挑战,其中血管内皮细胞功能障碍是关键环节。血管内皮糖萼作为覆盖在血管内皮表面的多糖-蛋白质复合层,在维持血管屏障、调节免疫和凝血平衡中起重要作用。脓毒症早期糖萼即遭受降解,机制涉及炎症因子激活、肝素酶与基质金属蛋白酶作用、氧化应激、凝血系统激活及Ang/Tie2信号通路失衡等。糖萼损伤与微循环障碍和器官衰竭密切相关,其降解程度可作为疾病预后的生物标志物。当前保护糖萼的治疗策略包括优化液体管理、使用专门的促消退介质、肝素类抗凝药物及新鲜冰冻血浆输注等。未来研究应聚焦于糖萼靶向治疗、个体化策略及多模式综合管理,以改善脓毒症患者预后。本文对目前脓毒症与血管内皮糖萼的部分关系及部分治疗策略进行总结及讨论。

关键词


脓毒症;内皮糖萼;机制;治疗

全文:

PDF


参考


[1]Lei Zhu, et al. The mechanisms of sepsis induced coagulation dysfunction and its treatment. J inflammation research. 2025;18:1479-1495. doi:10.2147/JIR.S504184

[2]Geoffrey P Dobson, et al. Revolution in sepsis: a symptoms-based to a systems-based approach?. J biomedical science. 2024;31(1):57. doi:10.1186/s12929-024-01043-4

[3]Wei Zhang, et al. Sepsis-induced endothelial dysfunction: permeability and regulated cell death. J inflammation research. 2024;17:9953-9973. doi:10.2147/JIR.S479926

[4]Jun-Hui Zhan, et al. Sepsis-associated endothelial glycocalyx damage: a review of animal models, clinical evidence, and molecular mechanisms. International journal of biological macromolecules. 2025;295:139548. doi:10.1016/j.ijbiomac.2025.139548

[5]Toshiaki Iba, et al. Managing sepsis and septic shock in an endothelial glycocalyx-friendly way: from the viewpoint of surviving sepsis campaign guidelines. Annals of intensive care. 2024;14(1):64. doi:10.1186/s13613-024-01301-6

[6]Julie Vinkel, et al. The mechanisms of action of hyperbaric oxygen in restoring host homeostasis during sepsis. Biomolecules. 2023;13(8). doi:10.3390/biom13081228

[7]Jiwei Shen, et al. The potential of exogenous specialized pro-resolving mediators in protecting against sepsis-associated lung injury: a review. Frontiers in pharmacology. 2025;16:1622754. doi:10.3389/fphar.2025.1622754

[8]John Hogwood, et al. Heparin, heparan sulphate and sepsis: potential new options for treatment. Pharmaceuticals (Basel, Switzerland). 2023;16(2). doi:10.3390/ph16020271

[9]Yawen Chi, et al. Role of angiopoietin/tie2 system in sepsis: a potential therapeutic target. Clinical and applied thrombosis/hemostasis : official journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis. 2024;30:10760296241238010. doi:10.1177/10760296241238010

[10]Prashant Nasa, et al. Fluid management in the septic peri-operative patient. Current opinion in critical care. 2024;30(6):664-671. doi:10.1097/MCC.0000000000001201

[11]Carolina Casas, et al. Advancing microcirculatory therapies in pediatric sepsis: current opportunities and future directions. J intensive care medicine. 2025;:8850666251340601. doi:10.1177/08850666251340601

[12]Guoqing Luo, et al. The role of histone deacetylases in acute lung injury-friend or foe. International journal of molecular sciences. 2023;24(9). doi:10.3390/ijms24097876

[13]Elisa Damiani, et al. Microcirculation-guided resuscitation in sepsis: the next frontier?. Frontiers in medicine. 2023;10:1212321. doi:10.3389/fmed.2023.1212321

[14]M S Kravitz, et al. Plasma for prevention and treatment of glycocalyx degradation in trauma and sepsis. Critical care (London, England). 2024;28(1):254. doi:10.1186/s13054-024-05026-7

[15]Anonymous. Recent data about the use of corticosteroids in sepsis-review of recent literature. Biomedicines. 2024;12(5). doi:10.3390/biomedicines12050984


Refbacks

  • 当前没有refback。