高海拔地区阻塞性睡眠呼吸暂停低通气综合征对冠心病的研究进展

贾 文博1, 陈 礴*2
1、青海大学附属医院
2、青海省心脑血管专科医院

摘要


本文围绕高海拔地区阻塞性睡眠呼吸暂停低通气综合征(OSAHS)与冠心病之间的关系展开系统综述,重点探讨了“OSAHS+高海拔”双重缺氧状态对冠心病发生发展的影响及其病理生理机制。文章指出,OSAHS在高海拔地区患病率更高,且其严重程度与冠状动脉病变程度呈正相关。双重缺氧通过激活交感神经系统、诱发氧化应激、炎症反应及内皮功能障碍等机制,加剧血压升高、血管损伤和血栓形成,从而促进冠心病的发生与进展。此外,本文还总结了针对此类患者的治疗策略,包括持续气道正压通气、氧疗、药物治疗及生活方式干预等,并展望了未来研究方向,如寻找新的药物靶点、开展长期随访研究及关注昼夜节律对睡眠与血压的影响。

关键词


阻塞性睡眠呼吸暂停低通气综合征(OSAHS);高海拔;冠心病

全文:

PDF


参考


[1]KASAI T, FLORAS J S, BRADLEY T D. Sleep apnea and cardiovascular disease: a bidirectional relationship [J]. Circulation, 2012, 126(12): 1495-510.

[2]苏小凤,刘霖,仲琳,等.中国阻塞性睡眠呼吸暂停综合征患病率的Meta分析[J].中国循证医学杂志,2021,21(10):1187-1194.

[3]DALLIMORE J. Mountains and high altitude [Z]. Oxford Handbook of Expedition and Wilderness Medicine. Oxford University Press. 2023: 0.10.1093/med/9780198867012.003.0021

[4]QIN Z, KANG D, FENG X, et al. Resting-state functional magnetic resonance imaging of high altitude patients with obstructive sleep apnoea hypopnoea syndrome [J]. Scientific Reports, 2020, 10(1): 15546.

[5]TAN L, LI T, LUO L, et al. The Characteristics of Sleep Apnea in Tibetans and Han Long-Term High Altitude Residents [J]. Nat Sci Sleep, 2022, 14: 1533-44.

[6]CHONG B, JAYABASKARAN J, JAUHARI S M, et al. Global burden of cardiovascular diseases: projections from 2025 to 2050 [J]. European Journal of Preventive Cardiology, 2024: zwae281.

[7]ZHANG T, ZHANG C, CHEN R X, et al. Correlation between coronary artery lesion quantitative score and OSAHS and relative risk factors [J]. Eur Rev Med Pharmacol Sci, 2018, 22(5): 1415-20.

[8]TYMKO M M, YOUNG D, VERGEL D, et al. The effect of hypoxemia on muscle sympathetic nerve activity and cardiovascular function: a systematic review and meta-analysis [J]. Am J Physiol Regul Integr Comp Physiol, 2023, 325(5): R474-r89.

[9]MANSUKHANI M P, KARA T, CAPLES S M, et al. Chemoreflexes, sleep apnea, and sympathetic dysregulation [J]. Curr Hypertens Rep, 2014, 16(9): 476.

[10]MIFFLIN S, CUNNINGHAM J T, TONEY G M. Neurogenic mechanisms underlying the rapid onset of sympathetic responses to intermittent hypoxia [J]. J Appl Physiol (1985), 2015, 119(12): 1441-8.

[11]CUTLER M J, SWIFT N M, KELLER D M, et al. Hypoxia-mediated prolonged elevation of sympathetic nerve activity after periods of intermittent hypoxic apnea [J]. J Appl Physiol (1985), 2004, 96(2): 754-61.

[12]SCHWARZ E I, LATSHANG T D, FURIAN M, et al. Blood pressure response to exposure to moderate altitude in patients with COPD [J]. Int J Chron Obstruct Pulmon Dis, 2019, 14: 659-66.

[13]MYRZAAKHMATOVA A K. [Obstructive sleep apnea at high altitude] [J]. Ter Arkh, 2017, 89(1): 103-6.

[14]NUSSBAUMER-OCHSNER Y, SCHUEPFER N, ULRICH S, et al. Exacerbation of sleep apnoea by frequent central events in patients with the obstructive sleep apnoea syndrome at altitude: a randomised trial [J]. Thorax, 2010, 65(5): 429-35.

[15]ROSSETTI G M K, OLIVER S J, SANDOO A, et al. Hypoxia-induced endothelial dysfunction: Could targeting oxidative stress provide protection? [J]. Exp Physiol, 2023, 108(8): 1026-8.

[16]CHU A A, YU H M, YANG H, et al. Evaluation of right ventricular performance and impact of continuous positive airway pressure therapy in patients with obstructive sleep apnea living at high altitude [J]. Sci Rep, 2020, 10(1): 20186.

[17]LAVIE L, LAVIE P. Molecular mechanisms of cardiovascular disease in OSAHS: the oxidative stress link [J]. Eur Respir J, 2009, 33(6): 1467-84.

[18]ALMEIDA G P, TROMBETTA I C, CEPEDA F X, et al. The Role of Acute Intermittent Hypoxia in Neutrophil-Generated Superoxide, Sympathovagal Balance, and Vascular Function in Healthy Subjects [J]. Front Physiol, 2017, 8: 4.

[19]PICHLER HEFTI J, LEICHTLE A, STUTZ M, et al. Increased endothelial microparticles and oxidative stress at extreme altitude [J]. Eur J Appl Physiol, 2016, 116(4): 739-48.

[20]SNOW J B, NORTON C E, SANDS M A, et al. Intermittent Hypoxia Augments Pulmonary Vasoconstrictor Reactivity through PKCβ/Mitochondrial Oxidant Signaling [J]. Am J Respir Cell Mol Biol, 2020, 62(6): 732-46.

[21]ARNAUD C, BILLOIR E, DE MELO JUNIOR A F, et al. Chronic intermittent hypoxia-induced cardiovascular and renal dysfunction: from adaptation to maladaptation [J]. J Physiol, 2023, 601(24): 5553-77.

[22]DOMINIC A, LE N-T, TAKAHASHI M. Loop Between NLRP3 Inflammasome and Reactive Oxygen Species [J]. Antioxidants & Redox Signaling, 2022, 36(10-12): 784-96.

[23]XIAO F, LI X, WANG J, et al. Mechanisms of vascular endothelial cell injury in response to intermittent and/or continuous hypoxia exposure and protective effects of anti-inflammatory and anti-oxidant agents [J]. Sleep Breath, 2019, 23(2): 515-22.

[24]FERNáNDEZ-BELLO I, MONZóN MANZANO E, GARCíA RíO F, et al. Procoagulant State of Sleep

[25]FUNG M L. The role of local renin-angiotensin system in arterial chemoreceptors in sleep-breathing disorders [J]. Front Physiol, 2014, 5: 336.

[26]璐谭,向东唐.高原地区睡眠呼吸障碍特征及治疗的研究进展[J].四川大学学报(医学版),2023,54(2):246.

[27]OHGA E, TOMITA T, WADA H, et al. Effects of obstructive sleep apnea on circulating ICAM-1, IL-8, and MCP-1 [J]. J Appl Physiol (1985), 2003, 94(1): 179-84.

[28]OLSON E J, MOORE W R, MORGENTHALER T I, et al. Obstructive Sleep Apnea-Hypopnea Syndrome [J]. Mayo Clinic Proceedings, 2003, 78(12): 1545-52.

[29]ITURRIAGA R, CASTILLO-GALáN S. Potential Contribution of Carotid Body-Induced Sympathetic and Renin-Angiotensin System Overflow to Pulmonary Hypertension in Intermittent Hypoxia [J]. Curr Hypertens Rep, 2019, 21(11): 89.


Refbacks

  • 当前没有refback。