高原地区代谢相关脂肪性肝病的发病机制及特点

刘 子赫1, 王 向前2, 王 岩2, 朱海 宏*2
1、青海大学医学院
2、青海省人民医院

摘要


高原特殊地理条件下形成的慢性低氧环境对代谢相关脂肪性肝病(MAFLD)的病理生理机制及临床表型具有显著调控作用。作为全球范围内发病率持续攀升的慢性肝病,MAFLD在高原地区的流行病学特征与平原地区存在明显差异,这一现象凸显了环境因素在该病发生发展中的重要作用。虽然目前关于MAFLD致病因素的研究已取得一定进展,但针对高原低氧这一特殊环境因素的研究仍相对匮乏。本研究基于多维度分析框架,整合流行病学调查数据、临床表型特征、代谢组学变化、表观遗传调控以及营养干预等研究证据,全面阐述了高原低氧环境下MAFLD的病理机制及其特有的临床表现谱。通过系统梳理国内外最新研究进展,本研究不仅为高原地区MAFLD的防治策略提供了科学依据,同时也为该特殊人群的健康管理提出了具有针对性的干预建议。

关键词


高原;代谢相关脂肪性肝病;发病机制;低氧;代谢调控;临床特点

全文:

PDF


参考


[1]Wang Y, Meng Q, Zhang J,et al. Altitude and Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) in China: A Population-Based Study. High Alt Med Biol. 2025 Jun;26(2):148-155. doi: 10.1089/ham.2024.0054. Epub 2024 Oct 17. PMID: 39417232.

[2]Zhu X, Qucuo N, Zhang N,et al. Dietary patterns and metabolic dysfunction-associated fatty liver disease in China's multi-ethnic regions. J Health Popul Nutr. 2023 Dec 13;42(1):141. doi: 10.1186/s41043-023-00485-0. PMID: 38093350; PMCID: PMC10717100.

[3]徐子轩,刘磊磊,杨婷婷,等.贵州省黔东南地区少数民族居民饮食因素与代谢相关脂肪性肝病患病的关联分析[J].现代预防医学,2022,49(14):2553-2558. DOI:10.20043/j.cnki.MPM.202203462.

[4]Yuan C, Zhang C, Geng X, et al. Associations of an overall healthy lifestyle with the risk of metabolic dysfunction-associated fatty liver disease. BMC Public Health. 2024 Nov 25;24(1):3264. doi: 10.1186/s12889-024-20663-x. PMID: 39587552; PMCID: PMC11587751.

[5]Liu Z, Hou J, Tian M,et al. Hypoxia ameliorates high-fat-diet-induced hepatic lipid accumulation by modulating the HIF2α/PP4C signaling. Cell Signal. 2025 Jul;131:111751. doi: 10.1016/j.cellsig.2025.111751. Epub 2025 Mar 18. PMID: 40112904.

[6]Gaucher J, Vial G, Montellier E, et al. Intermittent Hypoxia Rewires the Liver Transcriptome and Fires up Fatty Acids Usage for Mitochondrial Respiration. Front Med (Lausanne). 2022 Feb 18;9:829979. doi: 10.3389/fmed.2022.829979. PMID: 35252260; PMCID: PMC8894659.

[7]Midha AD, Zhou Y, Queliconi BB, et al. Organ-specific fuel rewiring in acute and chronic hypoxia redistributes glucose and fatty acid metabolism. Cell Metab. 2023 Mar 7;35(3):504-516.e5. doi: 10.1016/j.cmet.2023.02.007. PMID: 36889284; PMCID: PMC10077660.

[8]Liu Y, Li H. [Advances in regulation of hypoxia on adipocyte development and lipid metabolism]. Sheng Wu Gong Cheng Xue Bao. 2023 Oct 25;39(10):3925-3935. Chinese. doi: 10.13345/j.cjb.220950. PMID: 37877382.

[9]Zhao J, Liu L, Cao YY, et al. MAFLD as part of systemic metabolic dysregulation. Hepatol Int. 2024 Oct;18(Suppl 2):834-847. doi: 10.1007/s12072-024-10660-y. Epub 2024 Apr 9. PMID: 38594474.

[10]Peiseler M, Schwabe R, Hampe J, et al. Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease - novel insights into cellular communication circuits. J Hepatol. 2022 Oct;77(4):1136-1160. doi: 10.1016/j.jhep.2022.06.012. Epub 2022 Jun 22. PMID: 35750137.

[11]Hernández-Bustabad A, Morales-Arraez D, González-Paredes FJ, et al. Chronic intermittent hypoxia promotes early intrahepatic endothelial impairment in rats with nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol. 2022 Oct 1;323(4):G362-G374. doi: 10.1152/ajpgi.00300.2021. Epub 2022 Aug 2. PMID: 35916415.

[12]Clare K, Dillon JF, Brennan PN. Reactive Oxygen Species and Oxidative Stress in the Pathogenesis of MAFLD. J Clin Transl Hepatol. 2022 Oct 28;10(5):939-946. doi: 10.14218/JCTH.2022.00067. Epub 2022 Jul 6. PMID: 36304513; PMCID: PMC9547261.

[13]Sako S, Takeshita Y, Takayama H, et al. Trajectories of Liver Fibrosis and Gene Expression Profiles in Nonalcoholic Fatty Liver Disease Associated With Diabetes. Diabetes. 2023 Sep 1;72(9):1297-1306. doi: 10.2337/db22-0933. PMID: 37343270.

[14]Filipovic B, Marjanovic-Haljilji M, Mijac D, et al. Molecular Aspects of MAFLD-New Insights on Pathogenesis and Treatment. Curr Issues Mol Biol. 2023 Nov 15;45(11):9132-9148. doi: 10.3390/cimb45110573. PMID: 37998750; PMCID: PMC10669943.

[15]Pal SC, Eslam M, Mendez-Sanchez N. Detangling the interrelations between MAFLD, insulin resistance, and key hormones. Hormones (Athens). 2022 Dec;21(4):573-589. doi: 10.1007/s42000-022-00391-w. Epub 2022 Aug 3. Erratum in: Hormones (Athens). 2022 Dec;21(4):759. doi: 10.1007/s42000-022-00395-6. PMID: 35921046.

[16]Wolf AM, Wolf D, Rumpold H, et al. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem Biophys Res Commun. 2004 Oct 15;323(2):630-5. doi: 10.1016/j.bbrc.2004.08.145. PMID: 15369797.

[17]Zhao Y, Zhou Y, Wang D, et al. Mitochondrial Dysfunction in Metabolic Dysfunction Fatty Liver Disease (MAFLD). Int J Mol Sci. 2023 Dec 15;24(24):17514. doi: 10.3390/ijms242417514. PMID: 38139341; PMCID: PMC10743953.

[18]Huang C, He WM, Xie X, et al. [Retrospective analysis of clinical characteristics of patients with metabolic-associated fatty liver disease at high and low altitude areas]. Zhonghua Gan Zang Bing Za Zhi. 2022 Jul 20;30(7):710-715. Chinese. doi: 10.3760/cma.j.cn501113-20211213-00597. PMID: 36038339.

[19]Xing Y, Zhang P, Li X, et al. New predictive models and indices for screening MAFLD in school-aged overweight/obese children. Eur J Pediatr. 2023 Nov;182(11):5025-5036. doi: 10.1007/s00431-023-05175-x. Epub 2023 Aug 30. PMID: 37648793.

[20]Wang F, Liu J, Zeng Q, et al. Comparative analysis of long noncoding RNA and mRNA expression provides insights into adaptation to hypoxia in Tibetan sheep. Sci Rep. 2022 Apr 21;12(1):6597. doi: 10.1038/s41598-022-08625-y. PMID: 35449433; PMCID: PMC9023463.

[21]Sommerauer C, Kutter C. Noncoding RNAs and RNA-binding proteins: emerging governors of liver physiology and metabolic diseases. Am J Physiol Cell Physiol. 2022 Oct 1;323(4):C1003-C1017. doi: 10.1152/ajpcell.00232.2022. Epub 2022 Aug 15. PMID: 35968891.

[22]Soltanieh SK, Khastar S, Kaur I, et al. Long Non-Coding RNAs in Non-Alcoholic Fatty Liver Disease; Friends or Foes? Cell Biochem Biophys. 2025 Mar;83(1):279-294. doi: 10.1007/s12013-024-01555-8. Epub 2024 Oct 8. PMID: 39377981.

[23]Xiong KG, Kong JF, Lin TS, et al. Expression and clinical significance of serum lncRNA H19 in patients with metabolic dysfunction-associated fatty liver disease. Medicine (Baltimore). 2025 Mar 14;104(11):e41838. doi: 10.1097/MD.0000000000041838. PMID: 40101079; PMCID: PMC11922472.

[24]Shah M, Sarkar D. HCC-Related lncRNAs: Roles and Mechanisms. Int J Mol Sci. 2024 Jan 2;25(1):597. doi: 10.3390/ijms25010597. PMID: 38203767; PMCID: PMC10779127.

[25]Li P, Cheng W, Pubu Z, et al. Comprehensive transcriptome analysis reveals MSTRG.19853.1/ssc-miR-361-3p/NPPA axis is related to hypoxic adaptation in Tibetan pigs. BMC Genomics. 2025 Jul 1;26(1):595. doi: 10.1186/s12864-025-11783-8. PMID: 40597665; PMCID: PMC12211723.

[26]Davenport BN, Williams A, Regnault TRH, Jones HN, et al. Placenta hIGF1 nanoparticle treatment in guinea pigs mitigates FGR-associated fetal sex-dependent effects on liver metabolism-related signaling pathways. Am J Physiol Endocrinol Metab. 2025 Mar 1;328(3):E395-E409. doi: 10.1152/ajpendo.00440.2024. Epub 2025 Feb 5. PMID: 39907801; PMCID: PMC12183629.

[27]Galvanin C, Buch S, Nahon P, Trépo E. PNPLA3 in Alcohol-Related Liver Disease. Liver Int. 2025 Jan;45(1):e16211. doi: 10.1111/liv.16211. PMID: 39679853.

[28]Lee HK, Shin SR, Han AL. Metabolic dysfunction associated fatty liver disease (MAFLD) and serum vitamin D concentration in South Korea. Asia Pac J Clin Nutr. 2022;31(2):201-207. doi: 10.6133/apjcn.202206_31(2).0005. PMID: 35766555.

[29]Estefes-Duarte JA, Espinosa-Sanchez A, Perez-Hernandez N, et al. Mechanisms of Bioactive Lipids to Modulate Master Regulators of Lipid Homeostasis and Inflammation in Metabolic Syndrome. Curr Pharm Biotechnol. 2025;26(11):1755-1776. doi: 10.2174/0113892010340506241014112341. PMID: 39473107.

[30]Dolce A, Della Torre S. Sex, Nutrition, and NAFLD: Relevance of Environmental Pollution. Nutrients. 2023 May 16;15(10):2335. doi: 10.3390/nu15102335. PMID: 37242221; PMCID: PMC10222590.


Refbacks

  • 当前没有refback。