基于改进YOLOV5的玉米叶片病害识别研究

陈  增, 涂 承胜
重庆三峡学院计算机科学与工程学院

摘要


玉米作为我国四大粮食之一,其玉米叶片本身会受到病害的困扰,导致减产甚至枯萎死亡。近年来,随着深度学习的兴起,卷积神经网络(CNN)也逐渐使用在农作物识别。首先,利用YoLov5模型对数据集进行翻转、图像分割以提高病害识别率。然后,针对传统神经网络识别率低等问题,加入注意力模块模块,改进后的YoLov5模型相比之前都有较大的提升。

关键词


玉米叶片;病害检测;深度学习;卷积神经网络;YoLov5

全文:

PDF


参考


[1]李香菊.近年我国农田杂草防控中的突出问题与治理对[J].植物保护,2018,44(05):77-84

[2]吴孔明.中国农作物病虫害防控科技的发展方向[J].农学学报,2018,8(1):35-38.

[3]张文景,蒋泽中,秦立峰:基于弱监督下改进的CBAM-Res-Net18模型识别苹果多种叶部病害[J].智慧农业(中英文)2023,5(01):111-121.

[4]钊发,蒲智,程曦,等.基于轻量级MIE_Net的田间农作物病害识别[J].江苏农业科学,2023,51(10):176-184.

[5]耿创,宋品德,曹立佳.YOLO算法在目标检测中的研究进展[J].兵器装备工程学报,2022,43(9):162-173.

[6]王琳毅,白静,李文静,等.YOLO系列目标检测算法研究进展[J].计算机工程与应用,2023,59(14):15-29.

[7]Liu S, Qi L, Qin H, et al. Path Aggregation Network for Instance Segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.

[8]Hou Q,Zhou D, Feng J. Coordinate attention for efficient mobilenet work design[ C]. Proceedings of the IEEE/CVF conference on

[9]Ma N N, Zhang X Y, Sun J. Funnel activation for visual recognitionfCy/ComputerVision - ECCV 2020:16th European Conference, Glasgow, UK,August 23-28,2020,Proceedings,Part XI.ACM, 2020: 351-368.

[10]WANG JQ,CHENK,XU R,et al. CARAFE; content-aware ReAssembly of FEatures[C ]//2019 IEEE/CVF International Conference on Computer Vision (ICCV).Seoul, Korea ( South ) : IEEE, 2019: 3007-3016.




DOI: http://dx.doi.org/10.12361/2661-3786-06-02-132163

Refbacks

  • 当前没有refback。