土壤有机碳激发效应的发展及未来研究方向

杨 振宇, 兰 国新
重庆三峡学院环境与化学工程学院;重庆三峡学院三峡库区水环境演变与污染防治重庆市重点实验室

摘要


土壤碳库是陆地生态系统有机碳库的重要组成部分,在全球的碳循环过程中发挥着不可替代的作用。在全球气候变化以及人为活动的影响下,外源有机物的输入将不可避免地引起土壤有机碳的分解速率加快或减慢,这一现象被称为激发效应。激发效应对全球“土壤-大气”之间的相互反馈具有深远影响,对调控全球气候变化具有重要作用。本文总结了激发效应的发展、发生机理以及部分影响因素,并为之后的研究提出了一些建议。

关键词


土壤碳库;激发效应;产生机理;影响因素;研究建议

全文:

PDF


参考


[1] Delgado-Baquerizo M, Eldridge D J, Maestre F T, et al. Climate legacies drive global soil carbon stocks in terrestrial ecosystems[J]. Science Advances, 2017, 3(4): e1602008.

[2] Hopkins F, Gonzalez-Meler M A, Flower C E, et al. Ecosystem-level controls on root-rhizosphere respiration[J]. New Phytologist, 2013, 199(2): 339-351.

[3] Hicks Pries C E, Castanha C, Porras R C, et al. The whole-soil carbon flux in response to warming[J]. Science, 2017, 355(6332): 1420-1423.

[4] Van Kessel C, Horwath W R, Hartwig U, et al. Net soil carbon input under ambient and elevated CO2 concentrations: isotopic evidence after 4 years[J]. Global Change Biology, 2000, 6(4): 435-444.

[5] Sun Z, Liu S, Zhang T, et al. Priming of soil organic carbon decomposition induced by exogenous organic carbon input: a meta-analysis[J]. Plant and Soil, 2019, 443(1): 463-471.

[6] Fontaine S, Barot S, Barré P, et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply[J]. Nature, 2007, 450(7167): 277-280.

[7] Siles J A, Díaz-López M, Vera A, et al. Priming effects in soils across Europe[J]. Global Change Biology, 2022, 28(6): 2146-2157.

[8] Mondini C, Cayuela M L, Sanchez-Monedero M A, et al. Soil microbial biomass activation by trace amounts of readily available substrate[J]. Biology and Fertility of Soils, 2006, 42(6): 542-549.

[9] Kuzyakov Y, Friedel J K, Stahr K. Review of mechanisms and quantification of priming effects[J]. Soil Biology and Biochemistry, 2000, 32(11): 1485-1498.

[10] Chen R, Senbayram M, Blagodatsky S, et al. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories[J]. Global Change Biology, 2014, 20(7): 2356-2367.

[11] Zhou S, Lin J, Wang P, et al. Resistant soil organic

carbon is more vulnerable to priming by root exudate fractions than relatively active soil organic carbon[J]. Plant and Soil, 2022.

[12] Liu X-J A, Sun J, Mau R L, et al. Labile carbon input determines the direction and magnitude of the priming effect[J]. Applied Soil Ecology, 2017, 109: 7-13.

[13] Blagodatskaya Е, Kuzyakov Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review[J]. Biology and Fertility of Soils, 2008, 45(2): 115-131.

[14] Zhang W, Wang X, Wang S. Addition of External Organic Carbon and Native Soil Organic Carbon Decomposition: A Meta-Analysis[J]. PLOS ONE, 2013, 8(2): e54779.

[15] You M, He P, Dai S-S, et al. Priming effect of stable C pool in soil and its temperature sensitivity[J]. Geoderma, 2021, 401: 115216.

[16] Li Y, Wang Z, Shi W, et al. Litter quality modifies soil organic carbon mineralization in an ecological restoration area[J]. Land Degradation and Development, 2023, 34(6): 1806-1819.

[17] Vestergård M, Reinsch S, Bengtson P, et al. Enhanced priming of old, not new soil carbon at elevated atmospheric CO2[J]. Soil Biology and Biochemistry, 2016, 100: 140-148.

[18] Feng C, Sun H, Zhang Y. The magnitude and direction of priming were driven by soil moisture and temperature in a temperate forest soil of China[J]. Pedobiologia, 2021, 89.

[19] Yu W, Huang W, Weintraub-Leff S R, et al. Where and why do particulate organic matter (POM) and mineral-associated organic matter (MAOM) differ among diverse soils?[J]. Soil Biology and Biochemistry, 2022, 172: 108756.

[20] Pausch J, Zhu B, Kuzyakov Y, et al. Plant inter-species effects on rhizosphere priming of soil organic matter decomposition[J]. Soil Biology and Biochemistry, 2013, 57: 91-99.

[21] Xiao M, Shahbaz M, Liang Y, et al. Effect of microplastics on organic matter decomposition in paddy soil amended with crop residues and labile C: A three-source-partitioning study[J]. Journal of Hazardous Materials, 2021, 416: 126221.




DOI: http://dx.doi.org/10.12361/2661-3786-06-02-132204

Refbacks

  • 当前没有refback。