植物生长促进根际细菌在农业可持续性中的作用-综述

普拉 文卡, 都米 拉维, 罗沙 琳伊, 莎玛 阿都
马来亚大学农业生物技术研究所

摘要


植物生长促进根际细菌(PGPR)在可持续农业产业中显示出重要作用。随着合成化肥和杀虫剂用量的显着
减少,且人民对农作物生产的需求不断增长,这是当今的一大挑战。PGPR的使用已被证明是一种通过直接或间接
机制促进植物生长来提高农作物产量的环保方式。PGPR的机制包括调节激素和营养平衡、诱导对植物病原体的抵
抗力以及溶解营养物质以便植物吸收。此外,PGPR与根际内外的大块土壤中的微生物具有协同和拮抗的相互作用,
从而间接提高了植物的生长速度。有许多细菌种类可作为 PGPR,在文献中描述为成功地促进植物生长元素之一。。
然而,PGPR对植物生长的作用方式(机制)与 PGPR作为生物肥料的作用之间存在差距。因此,本综述弥补了上述
空白并总结了 PGPR作为生物肥料促进农业可持续发展的机制。

关键词


生物肥料;植物生长促进根际细菌(PGPR);植物微生物;植物生长

全文:

PDF


参考


[1]Armada, E.; Portela, G.; Roldan, A.; Azcon, R.

Combined use of beneficial soil microorganism and agrowaste

residue to cope with plant water limitation under semiarid

conditions. Geoderma 2014, 232, 640–648

[2]Calvo, P.; Nelson, L.M.; Kloepper, J.W. Agricultural

uses of plant biostimulants. Plant Soil 2014, 383, 3–41

[3]Nakkeeran, S.; Fernando, W.G.D.; Siddiqui, Z.A. Plant

growth promoting rhizobacteria formulations and its scope in

commercialization for the management of pests and dideases.

In PGPR: Biocontrol and Biofertilization; Siddiqui, Z.A., Ed.;

Springer: Dordrecht, The Netherlands, 2005; pp. 257–296

[4]Hiltner L. 1904. U¨ ber neuere Erfahrungen

und Probleme auf dem Gebiete der Bodenbakteriologie

unterbessonderer Ber ¨ ucksichtigung der Gr¨undung und

Brache. Arb. Dtsch. Landwirtsch. Ges. Berl. 98:59–78

[5]De Weert S, Kuiper I, Kamilova F, Mulders IHM,

Bloemberg GV, et al. 2007. The role of competitive root tip

colonization in the biological control of tomato foot and root

rot. In Biological Control of Plant Diseases, ed. SB Chincolkar,

KGMukerji, pp. 103–22. New York/London/Oxford: Haworth

[6]Lugtenberg BJJ, Dekkers LC, Bloemberg GV. 2001.

Molecular determinants of rhizosphere colonization by

Pseudomonas. Annu. Rev. Phytopathol. 39:461–90

[7]Siddiqui A, Haas D, Heeb S. 2005. Extracellular

protease of Pseudomonas fluorescens CHA0, a biocontrol factor

with activity against the root knot nematode Meloydogyne

incognita. Appl. Environ. Microbiol. 71:5646–49

[8]Marschner H. 1995. Mineral Nutrition of Higher

Plants. London: Academic. 2nd ed

[9]Lugtenberg BJJ, Kravchenko LV, Simons M. 1999.

Tomato seed and root exudate sugars: composition, utilization

by Pseudomonas biocontrol strains and role in rhizosphere

colonization. Environ. Microbiol. 1:439–46

[10]Kamilova F, Validov S, Azarova T, Mulders I,

Lugtenberg B. 2005. Enrichment for enhanced competitive

plant root tip colonizers selects for a new class of biocontrol

bacteria. Environ. Microbiol. 7:1809–17

[11]Validov S. 2007. Biocontrol of tomato foot and root

rot by Pseudomonas bacteria in stonewool. PhD thesis. Leiden

Univ. http://hdl.handle.net/1887/12480

[12]Weller DM. 1988. Biological control of soil borne

plant pathogens in the rhizosphere with bacteria. Annu.Rev.

Phytopathol. 26:379–407

[13]Kamilova F, Kravchenko LV, Shaposhnikov AI,

Azarova T, Makarova N, Lugtenberg BJJ. 2006. Organic acids,

sugars, and L-tryptophane in exudates of vegetables growing

on stonewool and their effects on activities of rhizosphere

bacteria. Mol. Plant Microbe Interact. 19:250–56

[14]Kamilova F, Kravchenko LV, Shaposhnikov AI,

Makarova N, Lugtenberg BJJ. 2006. Effects of the tomato

pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of

the biocontrol bacterium Pseudomonas fluorescens WCS365

on the composition of organic acids and sugars in tomato root

exudate. Mol. Plant Microbe Interact.19:1121–26

[15]Lugtenberg BJJ, Kravchenko LV, Simons M. 1999.

Tomato seed and root exudate sugars: composition, utilization

by Pseudomonas biocontrol strains and role in rhizosphere

colonization. Environ. Microbiol. 1:439–46

[16]Phillips DA, Fox TC, King MD, Bhuvaneswari TV,

Teuber LR. 2004. Microbial products trigger amino acid

exudation from plant roots. Plant Physiol. 136:2887–94

[17]Ahmad, F.; Ahmad, I.; Khan, M.S. Screening of free_xfffe_living rhizospheric bacteria for their multiple plant growth

promoting activities. Microbiol. Res. 2008, 163, 173–181

[18]Burdman, S.; Jurkevitch, E.; Okon, Y. Recent

advances in the use of plant growth promoting rhizobacteria

(PGPR) in agriculture. In Microbial Interactions in Agriculture

and Forestry; Subba Rao, N.S., Dommergues, Y.R., Eds.;

Science Publishers: Enfield, NH, USA, 2000; pp. 229–250.

[19]Weller, D.M.; Thomashow, L.S. Current challenges

in introducing beneficial microorganisms into the rhizosphere.

In Molecular Ecology of Rhizosphere Microorganisms:

Biotechnology and Release of GMOs; O’Gara, F.,Dowling,

D.N., Boesten, B., Eds.; VCH: New York, NY, USA, 1994; pp.

1–18.

[20]Kaymak, D.C. Potential of PGPR in agricultural

innovations. In Plant Growth and Health Promoting Bacteria;

[21]Maheshwari, D.K., Ed.; Springer-Verlag: Berlin/

Heidelberg, Germany, 2010.Saharan, B.S.; Nehra, V. Plant

growth promoting rhizobacteria: A critical review. Life Sci.

Med. Res. 2011, 21,1–30.

[22]hattacharyya, P.N.; Jha, D.K. Plant growth-promoting

rhizobacteria (PGPR): Emergence in agriculture. Wood J.

Microb. Biotechnol. 2012, 28, 1327–1350.

[23]Kloepper, J.W.; Schroth, M.N. Plant growthpromoting rhizobacteria on radishes. In Station de Pathologie,

Proceedings of the 4th International Conference on Plant

Pathogenic Bacteria, Tours, France, 27 August–2 September

1978; Végétale et Phyto-Bactériologie, Ed.; pp. 879–882.

[24]Kloepper, J.W.; Leong, J.; Teintze, M.; Schroth, M.N.

Enhanced plant growth by siderophores produced by plant

growth promoting rhizobacteria. Nature 1980, 286, 885–886

[25]Son, J.S.; Sumayo, M.; Hwang, Y.J.; Kim, B.S.; Ghim,

S.Y. Screening of plant growth promoting rhizobacteria as

elicitor of systemic resistance against grey leaf spot dieses in

pepper. Appl. Soil Ecol. 2014, 73, 1–8

[26]Gray, E.J.; Smith, D.L. Intracellular and extracellular

PGPR: Commonalities and distinctions in the plant-bacterium

signaling processes. Soil Biol. Biochem. 2005, 37, 395–412

[27]Egamberdieva, D.; Lugtenberg, B. Use of Plant

Growth-Promoting Rhizobacteria to Alleviate Salinity Stress in

Plants. In Use of Microbes for the Alleviation of Soil Stresses;

Springer: New York, NY, USA, 2014; Volume 1, pp. 73–96

[28]Okon Y, Bloemberg GV, Lugtenberg BJJ. 1998.

Biotechnology of biofertilization and phytostimulation In

Agricultural Biotechnology, ed. A Altman, pp. 327–49. New

York: Marcel Dekker

[29]Kloepper JW, Gutierrez-Estrada A, Mclnroy JA

(2007) Photoperiod regulates elicitation of growth promotion

but not induced resistance by plant growth-promoting

rhizobacteria. Can J Microbiol 53(2):159–167

[30]Han J, Sun L, Dong X, Cai Z, Sun X, Yang H, Wang

Y, Song W (2005) Characterization of a novel plant growthpromoting bacteria strain Delftia tsuruhatensis HR4 both as

a diazotroph and a potential biocontrol agent against various

plant pathogens. Syst Appl Microbiol 28(1):66–76

[31]Ahmad F, Ahmad I, Khan MS (2005) Indole acetic

acid production by the indigenous isolates of Azotobacter

and fluorescent Pseudomonas in the presence and absence of

tryptophan. Turk J Biol 29:29–34

[32]Boiero L, Perrig D, Masciarelli O, Penna C, Cassan

F, Luna V (2007) Phytohormone production by three strains

of Bradyrhizobium japonicum and possible physiological

and technological implications. Appl Microbiol Biotechnol

74:874–880. doi:10.1007/s00253-006-0731-9

[33]Ribaudo C,Krumpholz E, Cassan F,BottiniR,Cantore

M,CuraA(2006) Azospirillum sp. promotes root hair

development in tomato plants through a mechanism that

involves ethylene. J Plant Growth Regul 24:175–185.

doi:10.1007/s00344-005-0128-5

[34]Werner T, Motyka V, Laucou V, Smets R, Onckelen

HV, Schmulling T (2003) Cytokinin-deficient transgenic

Arabidopsis plants show multiple developmental alterations

indicating opposite functions of cytokinins in the regulation of

shoot and root meristem activity. Plant Cell 15:2532–2550

[35]Zaied KA, El-Diasty ZM, El-Rhman MMA, ElSanossy ASO (2009) Effect of horizontal DNA transfer

between Azotobacter strains on protein patterns of Azotobacter

transconjugants and biochemical traits in bioinoculated

Okra (Abelmoschus Esculentus, L.). Aust J Basic Appl Sci

3(2):748–760

[36]McCully ME (2001) Niches for bacterial endophytes

in crop plants: a plant biologist’s view. Aust J Plant Physiol

28:983–990

[37]Dong Z, McCully ME, Canny MJ (1997) Does

Acetobacter diazotrophicus live and move in the xylem of

sugarcane stems? Anatomical and physiological data. Ann Bot

80:147–158

[38]James EK, Olivares FL, de Oliveira ALM, dos Reis

FB, da Silva LG, Reis VM (2001) Further observations on

the interaction between sugar cane and Gluconacetobacter

diazotrophicus under laboratory and greenhouse conditions. J

Exp Bot 52:747–760

[39]Vessey JK (2003) Plant growth promoting

rhizobacteria as biofertilizers. Plant Soil 255:571–586

[40]Griffiths BS, Ritz K, Ebblewhite N, Dobson G (1999)

Soil microbial community structure: Effects of substrate loading

rates. Soil Biol Biochem 31:145–153. doi:10.1016/S0038-

0717(98)00117-5




DOI: http://dx.doi.org/10.12361/2661-3786-04-02-86920

Refbacks

  • 当前没有refback。