水稻抗旱性从常规育种到分子育种的研究进展

尤索 法泰, 奥罗 鲁欧, 莫哈 末马, 乌斯 曼拉
马来西亚布特拉大学(UPM)作物科学与食品研究所

摘要


干旱是对农业粮食生产的主要威胁,特别是在水稻这种半水生植物的种植中。耐旱性是一种复杂的数量性
状,具有复杂的表型,影响植物的不同发育阶段。水稻对多种干旱条件的敏感性或耐受性是由不同的干旱响应基因
与其他刺激信号转导途径的胁迫组件的作用协调的。跨学科研究人员利用基因工程或标记辅助选择等多种方法打破
了植物耐受性的复杂机制,开发出具有更高抗旱性的新品种。本综述的主要目的是突出通过常规育种和使用生物技
术工具开发耐旱水稻品种的当前方法,并全面审查有关抗旱基因、QTL分析、基因转化和标记的可用信息-辅助选
择。审查中讨论了干旱胁迫的响应、指标、原因和适应过程。总体而言,这篇综述系统地介绍了从传统到最新的耐
旱水稻品种分子开发的育种方法。这些信息可以作为研究人员和水稻育种者的指导。

关键词


QTL;非生物胁迫;作物改良;耐旱性;标记辅助选择;转基因

全文:

PDF


参考


[1]Sahebi, M.; Hanafi, M.M.; Rafii, M.Y.; Mahmud,

T.M.M.; Azizi, P.; Osman, M.; Miah, G. Improvement of

drought tolerance in rice (Oryza sativa L.): Genetics, genomic

tools, and the WRKY gene family. BioMed Res. Int. 2018,

2018, 3158474.

[2]Chukwu, S.C.; Rafii, M.Y.; Ramlee, S.I.; Ismail, S.I.;

Hasan, M.M.; Oladosu, Y.A.; Olalekan, K.K. Bacterial leaf

blight resistance in rice: A review of conventional breeding to

molecular approach. Mol. Biol. Rep. 2019, 46, 1–14.

[3]Hu, H.; Xiong, L. Genetic engineering and breeding

of drought-resistant crops. Annu. Rev. Plant Biol. 2014, 65,

6

农业科技管理: 2022年4卷2期

ISSN: 2661-3778(Print); 2661-3786(Online)

715–741.

[4]Ozga, J.A.; Kaur, H.; Savada, R.P.; Reinecke, D.M.

Hormonal regulation of reproductive growth under normal and

heat-stress conditions in legume and other model crop species.

J. Exp. Bot. 2016, 68, 1885–1894.

[5]Anjum, S.A.; Ashraf, U.; Zohaib, A.; Tanveer, M.;

Naeem, M.; Ali, I.; Nazir, U. Growth and development

responses of crop plants under drought stress: A review.

Zemdirbyste 2017, 104, 267–276.

[6]Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq,

A.; Zohaib, A.; Ihsan, M.Z. Crop production under drought and

heat stress: Plant responses and management options. Front.

Plant Sci. 2017, 8, 1147.

[7]Yue B, Xue W, Xiong L, Yu X, Luo L, et al. 2006.

Genetic basis of drought resistance at reproductive stage in

rice: separation of drought tolerance from drought avoidance.

Genetics 172:1213–28

[8]Ishimaru K, Shirota K, Higa M, Kawamitsu Y. 2001.

Identification of quantitative trait loci for adaxial and abaxial

stomatal frequencies in Oryza sativa. Plant Physiol. Biochem.

39:173–77

[9]Laza MR, Kondo M, Ideta O, Barlaan E, Imbe T. 2010.

Quantitative trait loci for stomatal density and size in lowland

rice. Euphytica 172:149–58

[10]Lilley JM, Ludlow MM, McCouch SR, O’Toole JC.

1996. Locating QTL for osmotic adjustment and dehydration

tolerance in rice. J. Exp. Bot. 47:1427–36

[11]Price AH, Young EM, Tomos AD. 1997. Quantitative

trait loci associated with stomatal conductance, leaf rolling

and heading date mapped in upland rice (Oryza sativa). New

Phytol. 137:83–91

[12]Yue B, Xiong L, Xue W, Xing Y, Luo L, Xu C. 2005.

Genetic analysis for drought resistance of rice at reproductive

stage in field with different types of soil. Theor. Appl. Genet.

111:1127–36

[13]Yue B, Xue W, Xiong L, Yu X, Luo L, et al. 2006.

Genetic basis of drought resistance at reproductive stage in

rice: separation of drought tolerance from drought avoidance.

Genetic 172:1213–28

[14]Zhang X, Zhou S, Fu Y, Su Z, Wang X, Sun C. 2006.

Identification of a drought tolerant introgression line derived

from Dongxiang common wild rice (O. rufipogon Griff.). Plant

Mol. Biol. 62:247–59

[15]Lontoc-RoyM,Dutilleul P, Prasher SO,HanL,

Brouillet T, Smith DL. 2006. Advances in the acquisition and

analysis of CT scan data to isolate a crop root system from the

soil medium and quantify root system complexity in 3-D space.

Geoderma 137:231–41

[16]Peleg Z, Fahima T, Krugman T, Abbo S, Yakir

DAN, et al. 2009. Genomic dissection of drought resistance in

durum wheat × wild emmer wheat recombinant inbreed line

population. Plant Cell Environ. 32:758–79

[17]Peleg Z, Fahima T, Krugman T, Abbo S, Yakir

DAN, et al. 2009. Genomic dissection of drought resistance in

durum wheat × wild emmer wheat recombinant inbreed line

population. Plant Cell Environ. 32:758–79

[18]Xu Y, This D, Pausch R, Vonhof W, Coburn J, et al.

2009. Leaf-level water use efficiency determined by carbon

isotope discrimination in rice seedlings: genetic variation

associated with population structure and QTL mapping. Theor.

Appl. Genet. 118:1065–81

[19]Huang X-Y, Chao D-Y, Gao J-P, Zhu M-Z, Shi M,

Lin H-X. 2009. A previously unknown zinc finger protein,

DST, regulates drought and salt tolerance in rice via stomatal

aperture control. Genes Dev. 23:1805–17

[20]Zhang J, Zheng HG, Aarti A, Pantuwan G, Nguyen

TT, et al. 2001. Locating genomic regions associated mwith

components of drought resistance in rice: comparative mapping

within and across species. Theor. Appl. Genet. 103:19–29

[21]Price AH, Steele KA, Moore BJ, Barraclough PP,

Clark LJ. 2000. A combined RFLP and AFLP linkage map of

upland rice (Oryza sativa L.) used to identify QTLs for root_xfffe_penetration ability. Theor. Appl.Genet. 100:49–587.

[22]Price AH, Steele KA, Moore BJ, Jones RGW. 2002.

Upland rice grown in soil-filled chambers and exposed to

contrasting water-deficit regimes: II. Mapping quantitative

trait loci for root morphology and distribution. Field Crops Res.

76:25–43

[23]A. Kumar, S. Dixit, and A. Henry, “Marker-assisted

introgression of major QTLs for grain yield under drought in

rice,” Translational Genomics for Crop Breeding: Abiotic

Stress, Yield and Quality, Volume 2, R. K. Varshney and R.

Tuberosa, Eds., 1st edition, 2013.

[24]Tripathy JN, Zhang J, Robin S, Nguyen TT, Nguyen

HT. 2000. QTLs for cell-membrane stability mapped in rice

(Oryza sativa L.) under drought stress. Theor. Appl. Genet.

100:1197–202

[25]Teulat B, This D, Khairallah M, Borries C, Ragot C,

et al. 1998. Several QTLs involved in osmoticadjustment trait

variation in barley (Hordeum vulgare L.). Theor. Appl. Genet.

96:688–98

[26]Xu Y, This D, Pausch R, Vonhof W, Coburn J, et al.

2009. Leaf-level water use efficiency determined by carbon

isotope discrimination in rice seedlings: genetic variation

associated with population structure and QTL mapping. Theor.

Appl. Genet. 118:1065–81

[27]Yadav R, Courtois B, Huang N, McLaren G.

1997. Mapping genes controlling root morphology and root

distribution in a doubled-haploid population of rice. Theor.

Appl. Genet. 94:619–32131

[28]Ashraf, M. (2010). Inducing drought tolerance in

plants: recent advances. Biotechnol. Adv. 28, 169–183. doi:

10.1016/j.biotechadv.2009.11.005

[29]Badu-Apraku, B., and Yallou, C. G. (2009).

Registration of striga-resistant and drought tolerant tropical

early maize populations TZE-W Pop DT STR C4 and TZE-Y

Pop DT STR C4. J. Plant Regist. 3, 86–90. doi: 10.3198/

jpr2008.06. 0356crg

[30]Valkoun, J. (2001). “Wheat pre-breeding using

wild progenitors,” in Wheat in a Global Environment, eds Z.

Bedö and L. Láng (Dordrecht: Springer), 699–707. doi:

10.1007/978-94-017-3674-9-94

[31]Tuberosa, R., and Salvi, S. (2006). Genomics

approaches to improve drought tolerance in crops. Trends Plant

Sci. 11, 405–412. doi: 10.1016/j.tplants.2006.06.003

[32]Saranga, Y., Menz, M., Jiang, C. X., Wright, R. J.,

Yakir, D., and Paterson, A. H.(2001). Genomic dissection of

genotype environment interactions conferring adaptation of

cotton to arid conditions. Genome Res. 11, 1988–1995. doi:

10.1101/gr.157201

[33]Lafitte, H. R., Yongsheng, G., Yan, S., and Li, Z. K.

(2007). Whole plant responses, key processes, and adaptation

to drought stress: the case of rice. J. Exp. Bot. 58,169–175.

doi: 10.1093/jxb/erl101

[34]Steele, K. A., Price, A. H., Shashidar, H. E., and

Witcombe, J. R. (2006). Markerassisted selection to introgress

rice QTLs controlling root traits into an Indian upland rice

variety. Theor. Appl. Genet. 112, 208–221. doi: 10.1007/

s00122-005-0110-4

[35]Steele, K. A., Virk, D. S., Kumar, R., Prasad, S. C.,

andWitcombe, J. R. (2007). Field evaluation of upland rice

lines selected for QTLs controlling root traits. Field Crops Res.

101, 180–186. doi: 10.1016/j.fcr.2006.11.002

[36]Serraj, R., Krishnamurthy, L., Kashiwagi, J., Kumar,

J., Chandra, S., and Crouch, J. H. (2004). Variation in root

traits of chickpea (Cicer arietinum L.) grown under terminal

drought. Field Crops Res. 88, 115–127. doi: 10.1016/

j.fcr.2003.12.001

[37]Harris, K., Klein, R., and Mullet, J. (2007). Sorghum

stay-green QTL individually reduces post-flowering droughtinduced leaf senescence. J. Exp. Bot. 58, 327–338. doi:

10.1093/jxb/erl225




DOI: http://dx.doi.org/10.12361/2661-3786-04-02-86921

Refbacks

  • 当前没有refback。