人工智能辅助在肝癌诊断中的应用进展
摘要
手段如血清学标志物、超声及CT/MRI影像检查和病理活检,均存在灵敏度有限、依赖操作者经验或侵袭性强等问
题。近年来,人工智能(AI)技术迅速发展,尤其是机器学习和深度学习在医学影像、液体活检和数字病理等领域
的应用,为肝癌的早期筛查、病灶鉴别、微血管侵犯预测及预后评估提供了新的工具。本文简要概述AI相关技术,
重点归纳其在影像学、液体活检和病理诊断中的应用进展,并对当前存在的问题与未来发展方向进行简要讨论。
关键词
全文:
PDF参考
[1]Rumgay H, Arnold M, Ferlay J, et al. Global burden
of primary liver cancer in 2020 and predictions to 2040. J
Hepatol. 2022;77(6):1598-1606.
[2]Wen B, Te L, Bai C, et al. Relative contribution
of hepatitis B and C viruses in primary liver cancer in
China: A systematic review and meta-analysis. J Infect.
2024;89(6):106298.
[3]Fan Z, Zhou P, Jin B, et al. Recent therapeutics in
hepatocellular carcinoma. Am J Cancer Res. 2023;13(1):261-
275.
[4]Wu G, Bajestani N, Pracha N, Chen C, Makary
MS. Hepatocellular carcinoma surveillance strategies: major
guidelines and screening advances. Cancers. 2024;16(23):3933.
[5]Hanif H, Ali MJ, Susheela AT, et al. Update on
the applications and limitations of alpha-fetoprotein for
hepatocellular carcinoma. World Journal of Gastroenterology.
2022;28:216 - 229.
[6]Chatzipanagiotou OP, Loukas C, Vailas M, et al.
Artificial intelligence in hepatocellular carcinoma diagnosis:
a comprehensive review of current literature. J Gastroenterol
Hepatol. 2024;39(10):1994-2005.
[7]Chartampilas E, Rafailidis V, Georgopoulou
V, Kalarakis G, Hatzidakis A, Prassopoulos P. Current
imaging diagnosis of hepatocellular carcinoma. Cancers.
2022;14(16):3997.
[8]Spârchez Z, Crăciun R, Nenu I, Mocan LP,
Spârchez M, Mocan T. Refining liver biopsy in hepatocellular
carcinoma: an in-depth exploration of shifting diagnostic and
therapeutic applications. Biomedicines. 2023;11(8):2324.
[9]Hori M, Suzuki Y, Sofue K, et al. Artificial
intelligence in imaging diagnosis of liver tumors: current status
and future prospects. Abdom Radiol (NY). 2025.
[10]Zhang X, Yang L, Liu C, Yuan X, Zhang Y. An
Artificial Intelligence Pipeline for Hepatocellular Carcinoma:
From Data to Treatment Recommendations. Int J Gen Med.
2025;18:3581-3595.
[11]Lu RF, She CY, He DN, et al. AI enhanced
diagnostic accuracy and workload reduction in hepatocellular
carcinoma screening. NPJ Digit Med. 2025;8(1):500.
[12]Cui Y, Zhang J, Li Z, et al. A CT-based deep
learning radiomics nomogram for predicting the response to
73
医学理论研究 | 第3卷/第4期
Medical Theory Research
neoadjuvant chemotherapy in patients with locally advanced
gastric cancer: A multicenter cohort study. EClinicalMedicine.
2022;46:101348.
[13]Duan J, Gao Q, Wang Z, et al. Exploration of
multi-omics liquid biopsy approaches for multi-cancer early
detection: the PROMISE study. The Innovation. 2025.
[14]Ding W, Zhang J, Jin Z, et al. Artificial
intelligence-driven pathomics in hepatocellular carcinoma:
current developments, challenges and perspectives. Discover
Oncology. 2025;16(1):1424.
[15]Haghshomar M, Kierans AS, Kulik L, Miller FH,
Borhani AA. Imaging-based diagnosis of hepatocellular
carcinoma: Liver Imaging Reporting and Data System and
beyond. British Journal of Radiology. 2025;98(1173):1344-
1355.
[16]Peng Y, Wu S, Xiong B, et al. Multiphase MRI
radiomics model for predicting microvascular invasion
in HCC: Development and clinical validation. Iliver.
2025;4(2):100165.
[17]Bashir U, Wang C, Smillie R, et al. Deep learning
for liver lesion segmentation and classification on staging
CT scans of colorectal cancer patients: a multi-site technical
validation study. Clin Radiol. 2025;85:106914.
[18]Monnin K, Jeltsch P, Fernandes-Mendes L, et
al. Deep learning for automatic detection of hepatocellular
carcinoma in dynamic contrast-enhanced MRI. Abdom
Radiol (NY). 2025.
[19]Lin J, Li Y, Li D, Zhuo L, Wei J, Wei J. Application
of large models in Imaging Diagnosis and Prognostic Analysis
in Hepatocellular Carcinoma. Clinical Surgical Oncology.
2025:100083.
[20]Akabane M, Imaoka Y, Kawashima J, Pawlik TM.
Advancing precision medicine in hepatocellular carcinoma:
current challenges and future directions in liquid biopsy,
immune microenvironment, single nucleotide polymorphisms,
and conversion therapy. Hepatic Oncology. 2025;12.
[21]Yang W, Nguyen R, Safri F, et al. Liquid Biopsy in
Hepatocellular Carcinoma: ctDNA as a Potential Biomarker
for Diagnosis and Prognosis. Current Oncology Reports.
2025;27:791 - 802.
[22]Kim SC, Kim DW, Cho EJ, et al. A circulating
cell-free DNA methylation signature for the detection of
hepatocellular carcinoma. Mol Cancer. 2023;22(1):164.
[23]Zhong F, Yao F, Wang XL, et al. Plasma exosomal
lncRNA-related signatures define molecular subtypes and
predict survival and treatment response in hepatocellular
carcinoma. Front Immunol. 2025;16:1663943.
[24]Liang S, Bai X, Gu Y. Improving Circulating Tumor
Cell Detection Using Image Synthesis and Transformer
Models in Cancer Diagnostics. Sensors (Basel, Switzerland).
2024;24.
[25]Rad MS, Huang J, Hosseini MM, et al. Deep
learning for digital pathology: A critical overview of
methodological framework. Journal of Pathology Informatics.
2025;19.
[26]Patil A, Hasan B, Park BU, et al. A Deep
Learning Model of Histologic Tumor Differentiation as a
Prognostic Tool in Hepatocellular Carcinoma. Mod Pathol.
2025;38(7):100747.
[27]Zhang X, Yu X, Liang W, et al. Deep
learning‐based accurate diagnosis and quantitative evaluation
of microvascular invasion in hepatocellular carcinoma on
whole‐slide histopathology images. Cancer Medicine.
2024;13(5):e7104.
[28]Jiang Y, Wang K, Wang YR, et al. Preoperative
and Prognostic Prediction of Microvascular Invasion
in Hepatocellular Carcinoma: A Review Based on
Artificial Intelligence. Technol Cancer Res Treat.
2023;22:15330338231212726.
[29]Zhang X, Yu X, Liang W, et al. Deep
learning‐based accurate diagnosis and quantitative evaluation
of microvascular invasion in hepatocellular carcinoma on
whole‐slide histopathology images. Cancer Medicine.
2024;13.
[30]Seraphin TP, Mesropian A, Žigutytė L, et al.
Artificial intelligence predicts outcome-related molecular
profiles and vascular invasion in hepatocellular carcinoma.
JHEP Reports. 2025:101592.
[31]Wang Y, Chi S, Tian Y, et al. Construction of an
artificially intelligent model for accurate detection of HCC by
integrating clinical, radiological, and peripheral immunological
features. Int J Surg. 2025;111(4):2942-2952.
Refbacks
- 当前没有refback。
