人工智能辅助在肝癌诊断中的应用进展

潘 鹏1, 周 瀛*2
1、青海大学
2、青海大学附属医院

摘要


原发性肝癌发病率和病死率居高不下,且早期多无特异症状,导致多数患者确诊时已属中晚期。传统诊断
手段如血清学标志物、超声及CT/MRI影像检查和病理活检,均存在灵敏度有限、依赖操作者经验或侵袭性强等问
题。近年来,人工智能(AI)技术迅速发展,尤其是机器学习和深度学习在医学影像、液体活检和数字病理等领域
的应用,为肝癌的早期筛查、病灶鉴别、微血管侵犯预测及预后评估提供了新的工具。本文简要概述AI相关技术,
重点归纳其在影像学、液体活检和病理诊断中的应用进展,并对当前存在的问题与未来发展方向进行简要讨论。

关键词


肝癌;人工智能;深度学习;影像组学;液体活检;病理诊断

全文:

PDF


参考


[1]Rumgay H, Arnold M, Ferlay J, et al. Global burden

of primary liver cancer in 2020 and predictions to 2040. J

Hepatol. 2022;77(6):1598-1606.

[2]Wen B, Te L, Bai C, et al. Relative contribution

of hepatitis B and C viruses in primary liver cancer in

China: A systematic review and meta-analysis. J Infect.

2024;89(6):106298.

[3]Fan Z, Zhou P, Jin B, et al. Recent therapeutics in

hepatocellular carcinoma. Am J Cancer Res. 2023;13(1):261-

275.

[4]Wu G, Bajestani N, Pracha N, Chen C, Makary

MS. Hepatocellular carcinoma surveillance strategies: major

guidelines and screening advances. Cancers. 2024;16(23):3933.

[5]Hanif H, Ali MJ, Susheela AT, et al. Update on

the applications and limitations of alpha-fetoprotein for

hepatocellular carcinoma. World Journal of Gastroenterology.

2022;28:216 - 229.

[6]Chatzipanagiotou OP, Loukas C, Vailas M, et al.

Artificial intelligence in hepatocellular carcinoma diagnosis:

a comprehensive review of current literature. J Gastroenterol

Hepatol. 2024;39(10):1994-2005.

[7]Chartampilas E, Rafailidis V, Georgopoulou

V, Kalarakis G, Hatzidakis A, Prassopoulos P. Current

imaging diagnosis of hepatocellular carcinoma. Cancers.

2022;14(16):3997.

[8]Spârchez Z, Crăciun R, Nenu I, Mocan LP,

Spârchez M, Mocan T. Refining liver biopsy in hepatocellular

carcinoma: an in-depth exploration of shifting diagnostic and

therapeutic applications. Biomedicines. 2023;11(8):2324.

[9]Hori M, Suzuki Y, Sofue K, et al. Artificial

intelligence in imaging diagnosis of liver tumors: current status

and future prospects. Abdom Radiol (NY). 2025.

[10]Zhang X, Yang L, Liu C, Yuan X, Zhang Y. An

Artificial Intelligence Pipeline for Hepatocellular Carcinoma:

From Data to Treatment Recommendations. Int J Gen Med.

2025;18:3581-3595.

[11]Lu RF, She CY, He DN, et al. AI enhanced

diagnostic accuracy and workload reduction in hepatocellular

carcinoma screening. NPJ Digit Med. 2025;8(1):500.

[12]Cui Y, Zhang J, Li Z, et al. A CT-based deep

learning radiomics nomogram for predicting the response to

73

医学理论研究 | 第3卷/第4期

Medical Theory Research

neoadjuvant chemotherapy in patients with locally advanced

gastric cancer: A multicenter cohort study. EClinicalMedicine.

2022;46:101348.

[13]Duan J, Gao Q, Wang Z, et al. Exploration of

multi-omics liquid biopsy approaches for multi-cancer early

detection: the PROMISE study. The Innovation. 2025.

[14]Ding W, Zhang J, Jin Z, et al. Artificial

intelligence-driven pathomics in hepatocellular carcinoma:

current developments, challenges and perspectives. Discover

Oncology. 2025;16(1):1424.

[15]Haghshomar M, Kierans AS, Kulik L, Miller FH,

Borhani AA. Imaging-based diagnosis of hepatocellular

carcinoma: Liver Imaging Reporting and Data System and

beyond. British Journal of Radiology. 2025;98(1173):1344-

1355.

[16]Peng Y, Wu S, Xiong B, et al. Multiphase MRI

radiomics model for predicting microvascular invasion

in HCC: Development and clinical validation. Iliver.

2025;4(2):100165.

[17]Bashir U, Wang C, Smillie R, et al. Deep learning

for liver lesion segmentation and classification on staging

CT scans of colorectal cancer patients: a multi-site technical

validation study. Clin Radiol. 2025;85:106914.

[18]Monnin K, Jeltsch P, Fernandes-Mendes L, et

al. Deep learning for automatic detection of hepatocellular

carcinoma in dynamic contrast-enhanced MRI. Abdom

Radiol (NY). 2025.

[19]Lin J, Li Y, Li D, Zhuo L, Wei J, Wei J. Application

of large models in Imaging Diagnosis and Prognostic Analysis

in Hepatocellular Carcinoma. Clinical Surgical Oncology.

2025:100083.

[20]Akabane M, Imaoka Y, Kawashima J, Pawlik TM.

Advancing precision medicine in hepatocellular carcinoma:

current challenges and future directions in liquid biopsy,

immune microenvironment, single nucleotide polymorphisms,

and conversion therapy. Hepatic Oncology. 2025;12.

[21]Yang W, Nguyen R, Safri F, et al. Liquid Biopsy in

Hepatocellular Carcinoma: ctDNA as a Potential Biomarker

for Diagnosis and Prognosis. Current Oncology Reports.

2025;27:791 - 802.

[22]Kim SC, Kim DW, Cho EJ, et al. A circulating

cell-free DNA methylation signature for the detection of

hepatocellular carcinoma. Mol Cancer. 2023;22(1):164.

[23]Zhong F, Yao F, Wang XL, et al. Plasma exosomal

lncRNA-related signatures define molecular subtypes and

predict survival and treatment response in hepatocellular

carcinoma. Front Immunol. 2025;16:1663943.

[24]Liang S, Bai X, Gu Y. Improving Circulating Tumor

Cell Detection Using Image Synthesis and Transformer

Models in Cancer Diagnostics. Sensors (Basel, Switzerland).

2024;24.

[25]Rad MS, Huang J, Hosseini MM, et al. Deep

learning for digital pathology: A critical overview of

methodological framework. Journal of Pathology Informatics.

2025;19.

[26]Patil A, Hasan B, Park BU, et al. A Deep

Learning Model of Histologic Tumor Differentiation as a

Prognostic Tool in Hepatocellular Carcinoma. Mod Pathol.

2025;38(7):100747.

[27]Zhang X, Yu X, Liang W, et al. Deep

learning‐based accurate diagnosis and quantitative evaluation

of microvascular invasion in hepatocellular carcinoma on

whole‐slide histopathology images. Cancer Medicine.

2024;13(5):e7104.

[28]Jiang Y, Wang K, Wang YR, et al. Preoperative

and Prognostic Prediction of Microvascular Invasion

in Hepatocellular Carcinoma: A Review Based on

Artificial Intelligence. Technol Cancer Res Treat.

2023;22:15330338231212726.

[29]Zhang X, Yu X, Liang W, et al. Deep

learning‐based accurate diagnosis and quantitative evaluation

of microvascular invasion in hepatocellular carcinoma on

whole‐slide histopathology images. Cancer Medicine.

2024;13.

[30]Seraphin TP, Mesropian A, Žigutytė L, et al.

Artificial intelligence predicts outcome-related molecular

profiles and vascular invasion in hepatocellular carcinoma.

JHEP Reports. 2025:101592.

[31]Wang Y, Chi S, Tian Y, et al. Construction of an

artificially intelligent model for accurate detection of HCC by

integrating clinical, radiological, and peripheral immunological

features. Int J Surg. 2025;111(4):2942-2952.


Refbacks

  • 当前没有refback。