SUMO通路相关预后模型: 从跨癌证据到胰腺导管腺癌的分层与免疫治疗策略
摘要
的发生发展中发挥核心作用,其在胰腺导管腺癌(PDAC)中的异常激活尤为显著。近年来,基于SUMO相关基
因的预后模型在多癌种中不断涌现,为理解肿瘤异质性及开展风险分层提供了新的思路。本文系统整合跨癌种证
据,梳理SUMO通路在肿瘤生物学、免疫调控与治疗响应中的关键环节,并总结已报道的SUMO相关预后模型
的构建策略与验证特点。结合现有PDAC研究,我们进一步讨论了SUMO通路在PDAC亚型识别、免疫微环境重
塑及靶向治疗(如TAK-981)中的潜在应用价值。综述认为,SUMO通路在预后评估、机制研究及免疫治疗策
略开发方面均具有重要转化潜力,但模型的外部验证、一致化构建流程及机制深度仍需进一步加强,以推动其在
PDAC中的规范化应用。
关键词
全文:
PDF参考
[1]Schneeweis C, Hassan Z, Schick M, Keller U,
Schneider G. The SUMO pathway in pancreatic cancer:
insights and inhibition. *British Journal of Cancer*.
2021;124(3):531-538.
[2]Duan Y, Du Y, Mu Y, Gu Z, Wang C. Prognostic
value, immune signature and molecular mechanisms of the
SUMO family in pancreatic adenocarcinoma. *Frontiers in
Molecular Biosciences*. 2022;9:1096679.
[3]Gu Y, Fang Y, Wu X, Xu T, Hu T, Xu Y,
et al. The emerging roles of SUMOylation in the
tumor microenvironment and therapeutic implications.
*Experimental Hematology & Oncology*. 2023;12(1):58.
[4]Chen Y. A new immuno-oncology target -
SUMOylation. *Trends in Cancer*. 2023;9(8):606-608.
[5]Peng W, Yang Z, Yan R, Mu L, Li L, Jin S, et al.
SUMOylation-regulated genes in colon cancer: expression
patterns and clinical implications. *Discover Oncology*.
2025;16(1):837.
[6]Chen Z, Yang J, Tang L, Sun X, Li Y, Sheng Z,
et al. SUMOylation patterns and signature characterize the
tumor microenvironment and predict prognosis in lung
adenocarcinoma. *Frontiers in Cell and Developmental
Biology*. 2023;11:1094588.
[7]Wang J, Cong P, Jin Z, Liu L, Sun D, Zhu W, et
al. A novel prognostic signature for hepatocellular carcinoma
based on SUMOylation-related genes. *Scientific Reports*.
2023;13(1):11233.
[8]Wu X, Li J-H, Xu L, Li Y-X, Zhu X-X, Wang
X-Y, et al. SUMO specific peptidase 3 halts pancreatic ductal
adenocarcinoma metastasis via deSUMOylating DKC1. *Cell
Death & Differentiation*. 2023;30(7):1742-1756.
[9]Biederstädt A, Hassan Z, Schneeweis C, Schick
M, Schneider L, Muckenhuber A, et al. SUMO pathway
inhibition targets an aggressive pancreatic cancer subtype.
*Gut*. 2020;69(8):1472-1482.
[10]Wang X, Yang C, Liu Y, Wang J. SUMOylation
substrate encoding genes as prognostic biomarkers in
pancreatic ductal adenocarcinoma with functional assessment
of SAF-B2. *Frontiers in Pharmacology*. 2025;16:1532658.
[11]Langston SP, Grossman S, England D, Afroze R,
Bence N, Bowman D, et al. Discovery of TAK-981, a
first-in-class inhibitor of SUMO-activating enzyme for
the treatment of cancer. *Journal of Medicinal Chemistry*.
2021;64(5):2501-2520.
[12]Kumar S, Schoonderwoerd MJA, Kroonen JS, de
Graaf IJ, Sluijter M, Ruano D, et al. Targeting pancreatic
cancer by TAK-981: a SUMOylation inhibitor that activates
the immune system and blocks cancer cell cycle progression in
a preclinical model. *Gut*. 2022;71(11):2266-2283.
[13]Erdem S, Lee HJ, Shankara Narayanan JSN,
Tharuka MDN, de la Torre J, Ren T, et al. Inhibition of
SUMOylation induces adaptive antitumor immunity against
pancreatic cancer through multiple effects on the tumor
microenvironment. *Molecular Cancer Therapeutics*.
2024;23(11):1597-1612.
[14]de la Torre Medina J, Joshi U, Sonowal H, Kuang Y,
Ren T, Chen D-H, et al. Immunomodulation of pancreatic
cancer via inhibition of SUMOylation and CD155/TIGIT
pathway. *bioRxiv*. 2025:2025.02.06.636475.
[15]Qian Y, Daza J, Itzel T, Betge J, Zhan T, Marmé
F, et al. Prognostic cancer gene expression signatures: current
status and challenges. Cells. 2021;10(3):648.
Refbacks
- 当前没有refback。
