宫颈癌免疫治疗的研究进展
摘要
治疗仍存在诸多限制,特别是复发或转移性宫颈癌。不同于传统的手术,放疗和化疗路径。免疫治疗试图从“病
毒-免疫-肿瘤”这层关系切入,打破传统的体外治疗。随着诊疗技术的不断进步,人们对肿瘤发病机制有了更深
一步的了解,免疫治疗成为恶性肿瘤的治疗新方法,也成为宫颈癌治疗的研究热点。本文将简要综述宫颈癌及复发
或转移性宫颈癌的免疫治疗新方法。
关键词
全文:
PDF参考
[1]向阳,宗丽菊.免疫检查点抑制剂在妇科恶性肿
瘤中的应用现状及展望[J].中国实用妇科与产科杂志,
2019,35(1):17-22.
[2]刘萍,白惠君.子宫颈癌的免疫治疗[J].中国实用
妇科与产科杂志,2024,40(1):41-44.
[3]张远丽,张玉敏,张师前.2019年泰山科技论坛
专家观点——妇科肿瘤的当下与未来[J].中国实用妇科与
产科杂志,2019,35(12):1401-1405.
[4]宗丽菊,向阳.晚期及复发宫颈癌免疫治疗的研
究进展与未来[J].中国实用妇科与产科杂志,2018,34
(11):1211-1216
[5]Bordignon V, Di Domenico EG, Trento E, et al.
How human papillomavirus replication and immune evasion
strategies take advantage of the host DNA damage repair
machinery[J]. Viruses, 2017, 9(12): 390.
[6]Kalbasi A, Ribas A. Tumour-intrinsic resistance to
immune checkpoint blockade [J]. Nature Reviews Immunology,
2020, 20 (1): 25-39.
39
医学理论研究 | 第3卷/第5期
Medical Theory Research
[7]Liu C, Chikina M, Deshpande R, et al.Treg cells
promote the SREBP1 dependent metabolic fitness of tumor_xfffe_promoting macrophages via repression of CD8 + T cell-derived
interferon-γ [J]. Immunity, 2019, 51(2): 381-397. e6.
[8]Patel R, Kim K, Shutinoski B, et al. Culling of APCs
by inflammatory cell death pathways restricts TIM3 and PD-1
expression and promotes the survival of primed CD8 T cells [J].
Cell Death & Differentiation, 2017, 24(11): 1900-1911.
[9]Elia G, Ferrari SM, Galdiero MR, Ragusa F, Paparo
SR, Ruffilli I, Varricchi G, Fallahi P, Antonelli A. New insight
in endocrine-related adverse events associated to immune
checkpoint blockade. Best Pract Res Clin Endocrinol Metab.
2020 Jan; 34(1): 101370. doi: 10.1016/j.beem.2019.101370
[10]Korman AJ, Peggs KS, Allison JP.Checkpoint
blockade in cancer immunotherapy[J].Adv Immunol, 2006,
90:297-339
[11]Wei SC, Levine JH, Cogdill AP, et al.Distinct
cellular mechanisms underlie anti-CTLA-4 and anti-PD-1
checkpoint blockade[J].Cell, 2017, 170(6): 1120-1133
[12]Chung HC, Ros W, Delord JP, et al.Efficacy and
safety of pembrolizumab in previously treated advanced
cervical cancer: results from the phase II KEYNOTE-
158study[J].J Clin On col, 2019, 37(17): 1470-1478.
[13]Colombo N, Dubot C, Lorusso D, et al.
Pembrolizumab for per-sistent, recurrent, or metastatic
cervical cancer[J]. N Engl J Med, 2021, 385(20): 1856-1867.
DOI: 10.1056/NEJMoa2112435.
[14]Tewari KS, Colombo N, Monk BJ, et al.
Pembrolizumab+chemotherapy in patients withpersistent,
recurrent, or metastatic cervi-cal cancer: Subgroup analysis
of keynote-826[J]. J Clin Oncol, 2022, 40(16_supp l): 5506.
DOI: 10.1200/JCO.2022.40.16_suppl.5506.
[15]周晖,刘昀昀,罗铭,等.《2022 NCCN子宫颈
癌临床实践指南(第1版)》解读[J].中国实用妇科与产
科杂志,2021,37(12):1220-1226.
[16]Lheureux S, Butler MO, Clarke B, et al. Association
of ipi-limumab with safety and antitumor activity in women
withmetastatic or recurrent human papillomavirus-related
cervicalcarcinoma[J]. JAMA Oncol, 2018, 4(7): e173776.
DOI: [10].01/jamaoncol.2017.3776.
[17]Mayadev JS, Enserro D, Lin YG, et al. Sequential
ipilimumabafter chemoradiotherapy in curative-intent treat_xfffe_ment of patientswith node-positive cervical cancer[J]. JAMA
Oncol, 2020, 6(1): 92-99. DOI: 10.1001/jamaoncol.2019.3857.
[18]Wu XH, J JF, L HM, et al. Efficacy and safety of
cadonilimab, an anti-PD-1/CTLA4 bispecific antibody, in
pre-viously treatedrecurrent or metastatic (R/M) cervical
cancer: A multicenter, open-label, single-arm, phase Ⅱ
trial(075)[J]. Gynecol Oncol, 2022, 166(Suppl 1): S47-S48.
DOI: 10.1016/S0090-8258(22)01293-8.
[19]中国临床肿瘤学会指南工作委员会.《CSCO免
疫检查点抑制剂临床应用指南2025》.
[20]VAN POELGEEST M I, VISCONTI V V, AGHAI
Z, et al. Potential use of lymph node-derived HPV-specificT
cells for adoptive cell therapy of cervical cancer[J].Cancer
Immunol Immunother, 2016, 65(12): 1451-1463.
[21]STEVANOVIĆ S, DRAPER L M, LANGHAN M
M, et al. Complete regression of metastatic cervical cancerafter
treatment with human papillomavirus-targetedtumor-infiltrating
T cells [J]. J Clin Oncol, 2015, 33(14): 1543-1550.
[22]王雨蒙,刘宝瑞,刘芹.肿瘤新抗原特异性过继
性细胞免疫治疗的研究进展[J].中华肿瘤杂志,2025,47
(4):298-307. DOI:10.3760/cma.j.cn112152-20240924-
00412.
[23]Bhuyan PK, Dallas M, Kraynyak K, et al. Durability
of re-sponse to VGX-3100 treatment of HPV16/18 positive
cervical HSIL[J].Hum Vaccin Immunother, 2021, 17(5):
1288-1293. DOI:10. 1080/21645515. 2020. 1823778.
[24]Trimble CL, Morrow MP, Kraynyak KA, et al. Safety,
efficacy, and immunogenicity of VGX-3100, a therapeutic
synthetic DNA vaccine targeting human papillomavirus 16
and 18 E6 and E7 proteins for cervical intraepithelial neoplasia
2/3:A ran-domised, double-blind, placebo-controlled phase
2b trial[J]. Lancet, 2015, 386(10008): 2078-2088. DOI:10.
1016/S0140 6736(15)00239-1.
[25]Brun JL, Dalstein V, Leveque J, et al. Regression
of high grade cervical intraepithelial neoplasia with TG4001
targeted immunotherapy[J]. Am J Obstet Gynecol, 2011,
204(2): 169. DOI:10. 1016/j. ajog. 2010. 09. 020.
[26]Borcoman E, Lalanne A, Delord JP, et al. Phase
Ⅰb/Ⅱ trial of tipapkinogene sovacivec, a therapeutic human
papillomavi-rus16-vaccine, in combination with avelumab
40
in patients with advanced human papillomavirus16-positive
cancers[J]. Eur J Cancer, 2023, 191: 112981. DOI: 10. 1016/j.
ejca. 2023. 112981.
[27]Wang J, Wang Q, Ma L, et al. Development of an
mRNA based therapeutic vaccine mHTV-03E2 for highrisk HPV related malignancies[J]. Mol Ther, 2024, 32(7):
2340-2356. DOI:10. 1016/j. ymthe. 2024. 04. 036.
[28]Zhao L, Zhang M, Cong H. Advances in the study of
HLA restricted epitope vaccines[J]. Hum Vaccin Immunother,
2013, 9(12): 2566-2577. DOI:10. 4161/hv. 26088.
[29]Perenkov AD, Sergeeva AD, Vedunova MV, et
al. In Vitro Tran-scribed RNA-Based Platform Vaccines:
Past, Present, and Fu-ture[J]. Vaccines, 2023, 11(10): 1600.
DOI:10. 3390/vac-cines11101600.
[30]Branda F, Pavia G, Ciccozzi A, et al. Human
Papillomavirus (HPV) Vaccination: Progress, Challenges, and
Future Direc-tions in Global Immunization Strategies[J].
Vaccines, 2024, 12 (11): 1293. DOI:10. 3390/vaccines12111293.
[31]Zhu L, Cui X, Yan Z, et al. Design and evaluation
of a multi epitope DNA vaccine against HPV16[J]. Hum
Vaccin Immu-nother, 2024, 20(1): 2352908. DOI: 10.
1080/21645515. 2024. 2352908.
[32]Ehsasatvatan M, Baghban Kohnehrouz B. Designing
and immu-nomolecular analysis of a new broad-spectrum
multiepitope vaccine against divergent human papillomavirus
types[J]. PLoS One, 2024, 19(12): e0311351. DOI:10. 1371/
journal. pone. 0311351.
[33]PENG S, FERRALL L, GAILLARD S, et
al.Development of DNA vaccine targeting E6 and E7proteins
of human papillomavirus 16 (HPV16) andHPV18 for
immunotherapy in combination withrecombinant vaccinia
boost and PD-1 antibody[J]. mBio, 2021, 12(1): e03224-20.
[34]FERRALL L, LIN K Y, RODEN R B S, et al.
Cervicalcancer immunotherapy: Facts and hopes[J]. Clin
CancerRes, 2021, 27(18): 4953-4973.
[35]O’MALLEY D M, NEFFA M, MONK B J, et
al. DualPD-1 and CTLA-4 checkpoint blockade using
balstilimaband zalifrelimab combination as second-line
treatmentfor advanced cervical cancer: An open-label phase
Ⅱstudy[J]. J Clin Oncol, 2022, 40(7): 762-771.
[36]Monk BJ, Toita T, Wu X, et al. Durvalumab versus
placebo with chemoradiotherapy for locally advanced cervical
cancer (CALLA): a randomised, double-blind, phase 3 trial[J].
Lancet Oncol, 2023, 24(12): 1334-1348. DOI: 10.1016/
S1470-2045(23)00479-5.
[37]Lorusso D, Xiang Y, Hasegawa K, et al.
Pembrolizumab or placebo with chemoradiotherapy followed
by pembrolizumab or placebo for newly diagnosed, highrisk, locally advanced cervical cancer (ENGOT-cx11/GOG-
3047/KEYNOTE-A18): a randomised, double-blind, phase
3 clinical trial[J]. Lancet, 2024, 403(1034): 1341-1350. DOI:
10.1016/S0140-6736(24)00317-9.
Refbacks
- 当前没有refback。
