神经退行性疾病中抗衰老蛋白对小胶质细胞作用

杨 丰帆, 王 志梅, 赵 心悦, 高 玉娇, 金 梅花
大连大学医学院

摘要


随着人类寿命延长,神经退行性疾病发病率也逐渐增加,由此可见衰老是神经退行性疾病最重要的危险因素。故,抗
衰老蛋白与神经退行性疾病作用机制越来越受社会重视。在神经退行性疾病发展过程中,脑中常驻特异性巨噬细胞—小胶质细
胞在其中发挥了重要作用,而研究发现,抗衰老蛋白也参与了对小胶质细胞的调控。本篇综述尝试总结各神经退行性疾病中相
关抗衰老蛋白调控小胶质细胞方面的研究进展 , 以期为各种神经退行性疾病的治疗提供更多具有可行性的新方法。

关键词


神经退行性疾病 ;抗衰老蛋白 ;小胶质细胞 ;神经炎症

全文:

PDF


参考


[1]ARMSTRONG R. What causes neurodegenerative

disease? [J]. Folia Neuropathol, 2020, 58(2): 93-112.

[2]LURATI A M, LARIA A, MARRAZZA M, et

al. The macrophages in rheumatic diseases [J]. Journal of

Inflammation Research, 2016, 9: 1-11.

[3] 田昊 , 李扬 .Klotho 参与阿尔兹海默病发病的研

究进展 [J]. 国际神经病学神经外科学杂志 ,2020,47(06):6

18-622.

[4]HANSON K, FISHER K, HOOPER NIGEL

M. Exploiting the neuroprotective effects of α-klotho to

tackle ageing- and neurodegeneration-related cognitive

dysfunction [J]. Neuronal Signaling, 2021, 5(2).

[5] WANG Y, WANG K, BAO Y, et al. The serum

soluble Klotho alleviates cardiac aging and regulates M2a/

M2c macrophage polarization via inhibiting TLR4/Myd88/

NF-κB pathway [J]. Tissue and Cell, 2022, 76: 101812.

[6]ZHU L, STEIN L R, KIM D, et al. Klotho controls

the brain-immune system interface in the choroid plexus [J].

Proc Natl Acad Sci U S A, 2018, 115(48): E11388-E11396.

[7]ZENG C Y, YANG T T, ZHOU H J, et al.

Lentiviral vector-mediated overexpression of Klotho in the

brain improves Alzheimer’s disease-like pathology and

cognitive deficits in mice [J]. Neurobiol Aging, 2019, 78:

18-28.

[8]BASURCO L, ABELLANAS M A, AYERRA L,

et al. Microglia and astrocyte activation is region-dependent

in the alpha-synuclein mouse model of Parkinson’s disease

[J]. Glia, 2023, 71(3): 571-587.

[9]SANCESARIO G M, DI LAZZARO G, GRILLO

P, et al. Biofluids profile of alpha-Klotho in patients with

Parkinson’s disease [J]. Parkinsonism Relat Disord, 2021,

90: 62-64.

[10]EMAMI ALEAGHA M S, HARIRCHIAN M H,

LAVASANI S, et al. Differential Expression of Klotho in the

Brain and Spinal Cord is Associated with Total Antioxidant

Capacity in Mice with Experimental Autoimmune

Encephalomyelitis [J]. J Mol Neurosci, 2018, 64(4): 543-

550.

[11]BATIHA G E, AL-KURAISHY H M, ALGAREEB A I, et al. SIRT1 pathway in Parkinson’s disease:

a faraway snapshot but so close [J]. Inflammopharmacology,

2023, 31(1): 37-56.

[12]MERLO S, CARUSO G I, BONFILI L, et

al. Microglial polarization differentially affects neuronal

vulnerability to the beta-amyloid protein: Modulation by

melatonin [J]. Biochem Pharmacol, 2022, 202: 115151.

[13]YANG Y, GONG Z, WANG Z, et al. Activation

of Sirt1/PGC1alpha pathway attenuates neuroinflammation

injury in Parkinson’s disease [J]. J Recept Signal Transduct

Res, 2020: 1-4.

[14]LI X, FENG Y, WANG X X, et al. The Critical

Role of SIRT1 in Parkinson’s Disease: Mechanism and

Therapeutic Considerations [J]. Aging Dis, 2020, 11(6):

1608-1622.

[15]GIACOMETTI J, GRUBIC-KEZELE T.

Olive Leaf Polyphenols Attenuate the Clinical Course of

Experimental Autoimmune Encephalomyelitis and Provide

Neuroprotection by Reducing Oxidative Stress, Regulating

Microglia and SIRT1, and Preserving Myelin Integrity [J].

Oxid Med Cell Longev, 2020, 2020: 6125638.

[16]CHEN Y F, CHOU T Y, LIN I H, et al.

Upregulation of Cisd2 attenuates Alzheimer’s-related

neuronal loss in mice [J]. J Pathol, 2020, 250(3): 299-311.

[17]KUNG W M, LIN C C, KUO C Y, et al.

Wild Bitter Melon Exerts Anti-Inflammatory Effects

by Upregulating Injury-Attenuated CISD2 Expression

following Spinal Cord Injury [J]. Behav Neurol, 2020, 2020:

1080521.

[18]KUNG W M, LIN C C, CHEN W J, et al. AntiInflammatory CDGSH Iron-Sulfur Domain 2: A Biomarker

of Central Nervous System Insult in Cellular, Animal

Models and Patients [J]. Biomedicines, 2022, 10(4).


Refbacks

  • 当前没有refback。