镁/锌双离子表面改性在种植体周围牙龈软组织整合中的研究进展

李 欣蕊, 王 明杰, 高 玙璠, 纪 文瑞, 范 乐怡, 黄 硕, 刘 昌奎
西安医学院口腔医学院

摘要


随着牙科种植技术的不断进步,种植体与周围软组织的整合水平已成为研究领域的重点。镁和锌作为重要的生物元素,因其在细胞增殖、迁移和分化中的促进作用,备受关注。近年来,镁/锌双离子表面改性技术被广泛应用于种植体的研究中,旨在提升种植体与周围牙龈软组织的整合效果。尽管已有多项研究表明该技术能够有效促进软组织的愈合和整合,但仍存在一些挑战和未解之谜。本文旨在综述镁/锌双离子表面改性对种植体周围牙龈软组织整合的影响机制,评估其应用现状,分析当前研究中的不足之处,并展望未来的研究方向和潜在临床应用,以期为相关领域的研究提供参考。

关键词


镁离子;锌离子;种植体;牙龈软组织;表面改性

全文:

PDF


参考


[1]Hu Y, Guo X, Qiao Y, et al. Preparation of medical Mg-Zn alloys and the effect of different zinc contents on the alloy. J Mater Sci Mater Med. 2022;33(1):9.

[2]Tang M, Yan Y, OuYang J, et al. Research on corrosion behavior and biocompatibility of a porous Mg-3%Zn/5%β-Ca3(PO4)2 composite scaffold for bone tissue engineering. J Appl Biomater Funct Mater. 2019 Apr-Jun;17(2):2280800019857064.

[3]Venezuela J, Dargusch MS. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review. Acta Biomater. 87:1-40.

[4]Chen S, Du T, Zhang H, et al. Methods for improving the properties of zinc for the application of biodegradable vascular stents. Biomater Adv. 156:213693.

[5]Pan C, Zhao Y, Yang Y, et al. Immobilization of bioactive complex on the surface of magnesium alloy stent material to simultaneously improve anticorrosion, hemocompatibility and antibacterial activities. Colloids Surf B Biointerfaces. 199:111541.

[6]Fan M, Zhao F, Peng S, et al. Biocompatibility of Zinc Matrix Biodegradable Composites Reinforced by Graphene Nanosheets. Materials (Basel). 2022;15(18).

[7]Venezuela JJD, Johnston S, Dargusch MS. The Prospects for Biodegradable Zinc in Wound Closure Applications. Adv Healthc Mater. 2019;8(16):e1900408.

[8]Shannon A, O’Sullivan A, O’Sullivan KJ, et al. Assessing the Dispersion Stability of Antimicrobial Fillers in Photosensitive Resin for Vat Polymerization 3D Printing. 3D Print Addit Manuf. 2024;11(3):e1334-e1342.

[9]Rokosz K, Hryniewicz T, Raaen S, et al. Metal Ions Supported Porous Coatings by Using AC Plasma Electrolytic Oxidation Processing. Materials (Basel). 2020;13(17).

[10]Guzmán DC, Brizuela NO, Herrera MO, et al. Assessment of the Roles of Magnesium and Zinc in Clinical Disorders. Curr Neurovasc Res. 2023;20(4):505-513.

[11]Wetzel R, Bartzok O, Brauer DS. Influence of low amounts of zinc or magnesium substitution on ion release and apatite formation of Bioglass 45S5. J Mater Sci Mater Med. 2020;31(10):86.

[12]Ray S, Vashisht Y, Saikia D, et al. Serum Micronutrients and Antioxidant Levels in Children With Transfusion-Dependent Thalassemia. Indian Pediatr. 2023;60(12):1005-1007.

[13]Davuluri KS, Shukla S, Kakade M, et al. Explorations on the antiviral potential of zinc and magnesium salts against chikungunya virus: implications for therapeutics. Front Cell Infect Microbiol. 2024 Jun 4;14:1335189.

[14]Hosseini B, Saedisomeolia A, Allman-Farinelli M. Association Between Antioxidant Intake/Status and Obesity: a Systematic Review of Observational Studies. Biol Trace Elem Res. 2017 Feb;175(2):287-297.

[15]Zhu Y, Zhang CN, Gu YX, et al. The responses of human gingival fibroblasts to magnesium-doped titanium. J Biomed Mater Res A. 2020;108(2):267-278.

[16]Han J, Andrée L, Deng D, et al. Biofunctionalization of dental abutments by a zinc/chitosan/gelatin coating to optimize fibroblast behavior and antibacterial properties. J Biomed Mater Res A. 2024;112(11):1873-1892.

[17]Wang Z, Tuerxun P, Ng T, Yan Y, Zhao K, Jian Y, Jia X. Enhancing angiogenesis in peri-implant soft tissue with bioactive silk fibroin microgroove coatings on zirconia surfaces. Regen Biomater. 2024 Jun 17;11:rbae068.

[18]Sun J, Ding Q, Chen Y, et al. Effects and underlying mechanism of micro-nano-structured zirconia surfaces on biological behaviors of human gingival fibroblasts under inflammatory conditions. Acta Biomater. 2024 Jul 15;183:356-370.

[19]Miao X, Wang D, Xu L, Wang J, Zeng D, Lin S, Huang C, Liu X, Jiang X. The response of human osteoblasts, epithelial cells, fibroblasts, macrophages and oral bacteria to nanostructured titanium surfaces: a systematic study. Int J Nanomedicine. 2017 Feb 20;12:1415-1430.

[20]Wang Z, Tuerxun P, Ng T, Yan Y, Zhao K, Jian Y, Jia X. Enhancing angiogenesis in peri-implant soft tissue with bioactive silk fibroin microgroove coatings on zirconia surfaces. Regen Biomater. 2024 Jun 17;11:rbae068.

[21]Wang Y, Zhang J, Yu H, et al. Photothermal modulation of gingival fibroblasts via polydopamine-coated zirconia: A novel approach for promoting peri-implant soft tissue integration. J Stomatol Oral Maxillofac Surg. 2024;125(5S1):101925.

[22]Tan X, Wang Z, Yang X, et al. Enhancing cell adhesive and antibacterial activities of glass-fibre-reinforced polyetherketoneketone through Mg and Ag PIII. Regen Biomater. 2023 Jul 12;10:rbad066.

[23]Zhu Y, Zhang CN, Gu YX, Shi JY, Mo JJ, Qian SJ, Qiao SC, Lai HC. The responses of human gingival fibroblasts to magnesium-doped titanium. J Biomed Mater Res A. 2020 Feb;108(2):267-278.

[24]Maldonado Molina O. Insertion of orthodontic temporary anchorage devices with free gingival grafting for phenotype modification of the peri-implant mucosa. J Oral Biol Craniofac Res. 2023 Nov-Dec;13(6):727-730.


Refbacks

  • 当前没有refback。